Yang Jinyu, Feng Yangyang, Chen Xiulan, Xie Binbin, Zhang Yuzhong, Shi Mei, Zhang Xiying. Family-level diversity of extracellular proteases of sedimentary bacteria from the South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(12): 73-83. doi: 10.1007/s13131-019-1391-9
Citation: Yang Jinyu, Feng Yangyang, Chen Xiulan, Xie Binbin, Zhang Yuzhong, Shi Mei, Zhang Xiying. Family-level diversity of extracellular proteases of sedimentary bacteria from the South China Sea[J]. Acta Oceanologica Sinica, 2019, 38(12): 73-83. doi: 10.1007/s13131-019-1391-9

Family-level diversity of extracellular proteases of sedimentary bacteria from the South China Sea

doi: 10.1007/s13131-019-1391-9
  • Received Date: 2018-12-07
  • Protease-producing bacteria and their extracellular proteases are key players in degrading organic nitrogen to drive marine nitrogen cycling and yet knowledge on both of them is still very limited. This study screened protease-producing bacteria from the South China Sea sediments and analyzed the diversity of their extracellular proteases at the family level through N-terminal amino acid sequencing. Results of the 16S rRNA gene sequence analysis showed that all screened protease-producing bacteria belonged to the class Gammaproteobacteria and most of them were affiliated with different genera within the orders Alteromonadales and Vibrionales. The N-terminal amino acid sequence analysis for fourteen extracellular proteases from fourteen screened bacterial strains revealed that all these proteases belonged to the M4 family of metalloproteases or the S8 family of serine proteases. This study presents new details on taxa of marine sedimentary protease-producing bacteria and types of their extracellular proteases, which will help to comprehensively understand the process and mechanism of the microbial enzymatic degradation of marine sedimentary organic nitrogen.
  • loading
  • Arnosti C. 2011. Microbial extracellular enzymes and the marine carbon cycle. Annual Review of Marine Science, 3:401-425, doi: 10.1146/annurev-marine-120709-142731
    Arnosti C, Bell C, Moorhead D L, et al. 2014. Extracellular enzymes in terrestrial, freshwater, and marine environments:perspectives on system variability and common research needs. Biogeochemistry, 117(1):5-21, doi: 10.1007/s10533-013-9906-5
    Azam F, Malfatti F. 2007. Microbial structuring of marine ecosystems. Nature Reviews Microbiology, 5(10):782-791, doi: 10.1038/nrmicro1747
    Boetius A, Lochte K. 1994. Regulation of microbial enzymatic degradation of OM in deep-sea sediments. Marine Ecology Progress, 104:299-307, doi: 10.3354/meps104299
    Bridoux M C, Neibauer J, Ingalls A E, et al. 2015. Suspended marine particulate proteins in coastal and oligotrophic waters. Journal of Marine Systems, 143:39-48, doi: 10.1016/j.jmarsys.2014.10.014
    Chen Xiulan, Xie Binbin, Bian Fei, et al. 2009. Ecological function of myroilysin, a novel bacterial M12 metalloprotease with elastinolytic activity and a synergistic role in collagen hydrolysis, in biodegradation of deep-sea high-molecular-weight organic nitrogen. Applied and Environmental Microbiology, 75(7):1838-1844, doi: 10.1128/AEM.02285-08
    Chen Xiulan, Xie Binbin, Lu Jingtao, et al. 2007. A novel type of subtilase from the psychrotolerant bacterium Pseudoalteromonas sp. SM9913:catalytic and structural properties of deseasin MCP-01. Microbiology, 153(7):2116-2125, doi: 10.1099/mic.0.2007/006056-0
    Chen Xiulan, Zhang Yuzhong, Gao Peiji, et al. 2003. Two different proteases produced by a deep-sea psychrotrophic bacterial strain, Pseudoaltermonas sp. SM9913. Marine Biology, 143(5):989-993, doi: 10.1007/s00227-003-1128-2
    Chenna R, Sugawara H, Koike T, et al. 2003. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research, 31(13):3497-3500, doi: 10.1093/nar/gkg500
    Fabiano M, Danovaro R. 1998. Enzymatic activity, bacterial distribution, and organic matter composition in sediments of the ross sea (Antarctica). Applied and Environmental Microbiology, 64(10):3838-3845
    Gao Xiang, Wang Jue, Yu Daqi, et al. 2010. Structural basis for the autoprocessing of zinc metalloproteases in the thermolysin family. Proceedings of the National Academy of Sciences of the United States of America, 107(41):17569-17574, doi: 10.1073/pnas.1005681107
    Geng Ce, Nie Xiangtao, Tang Zhichao, et al. 2016. A novel serine protease, Sep1, from Bacillus firmus DS-1 has nematicidal activity and degrades multiple intestinal-associated nematode proteins. Scientific Reports, 6:25012, doi: 10.1038/srep25012
    He Hailun, Guo Jun, Chen Xiulan, et al. 2012. Structural and functional characterization of mature forms of metalloprotease E495 from Arctic sea-ice bacterium Pseudoalteromonas sp. SM495. PLoS One, 7(4):e35442, doi: 10.1371/journal.pone.0035442
    Herbert R A. 1999. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiology Reviews, 23(5):563-590, doi: 10.1111/j.1574-6976.1999.tb00414.x
    Jørgensen B B, Boetius A. 2007. Feast and famine-microbial life in the deep-sea bed. Nature Reviews Microbiology, 5(10):770-781, doi: 10.1038/nrmicro1745
    Jung S Y, Jung Y T, Oh T K, et al. 2007. Photobacterium lutimaris sp. nov., isolated from a tidal flat sediment in Korea. International Journal of Systematic and Evolutionary Microbiology, 57(2):332-336, doi: 10.1099/ijs.0.64580-0
    Kessler E, Safrin M, Olson J C, et al. 1993. Secreted LasA of Pseudomonas aeruginosa is a staphylolytic protease. Journal of Biological Chemistry, 268(10):7503-7508
    Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16(2):111-120, doi: 10.1007/BF01731581
    Li Huijuan, Tang Bailu, Shao Xuan, et al. 2016. Characterization of a new S8 serine protease from marine sedimentary Photobacterium sp. A5-7 and the function of its protease-associated domain. Frontiers in Microbiology, 7:2016, doi: 10.3389/fmicb.2016.02016
    Li Yan, Wu Chaoya, Zhou Mingyang, et al. 2017. Diversity of cultivable protease-producing bacteria in Laizhou Bay sediments, Bohai Sea, China. Frontiers in Microbiology, 8:405, doi: 10.3389/fmicb.2017.00405
    Lloyd K G, Schreiber L, Petersen D G, et al. 2013. Predominant archaea in marine sediments degrade detrital proteins. Nature, 496(7444):215-218, doi: 10.1038/nature12033
    Long R A, Azam F. 2001. Antagonistic interactions among marine pelagic bacteria. Applied and Environmental Mircobiology, 67(11):4975-4983, doi: 10.1128/AEM.67.11.4975-4983.2001
    Matsuyama H, Sawazaki K, Minami H, et al. 2014. Pseudoalteromonas shioyasakiensis sp. nov., a marine polysaccharide-producing bacterium. International Journal of Systematic and Evolutionary Microbiology, 64(1):101-106, doi: 10.1099/ijs.0.055558-0
    Moore E K, Harvey H R, Faux J F, et al. 2014. Electrophoretic extraction and proteomic characterization of proteins buried in marine sediments. Chromatography, 1(4):176-193, doi: 10.3390/chromatography1040176
    Nelson P N, Baldock J A. 2005. Estimating the molecular composition of a diverse range of natural organic materials from solid-state 13C NMR and elemental analyses. Biogeochemistry, 72(1):1-34, doi: 10.1007/s10533-004-0076-3
    Olivera N L, Sequeiros C, Nievas M L. 2007. Diversity and enzyme properties of protease-producing bacteria isolated from sub-Antarctic sediments of Isla de Los Estados, Argentina. Extremophiles, 11(3):517-526, doi: 10.1007/s00792-007-0064-3
    Patel A B, Fukami K, Nishijima T. 2001. Extracellular proteolytic activity in the surface sediment of a eutrophic inlet. Microbes and Environments, 16(1):25-35, doi: 10.1264/jsme2.2001.25
    Poremba K. 1995. Hydrolytic enzymatic activity in deep-sea sediments. FEMS Microbiology Ecology, 16(3):213-221, doi: 10.1111/fem.1995.16.issue-3
    Qin Qilong, Zhang Xiying, Wang Xumin, et al. 2010. The complete genome of Zunongwangia profunda SM-A87 reveals its adaptation to the deep-sea environment and ecological role in sedimentary organic nitrogen degradation. BMC Genomics, 11:247, doi: 10.1186/1471-2164-11-247
    Ran Liyuan, Su Hainan, Zhao Guoyan, et al. 2013. Structural and mechanistic insights into collagen degradation by a bacterial collagenolytic serine protease in the subtilisin family. Molecular Microbiology, 90(5):997-1010, doi: 10.1111/mmi.12412
    Ran Liyuan, Su Hainan, Zhou Mingyang, et al. 2014. Characterization of a novel subtilisin-like protease myroicolsin from deep sea bacterium Myroides profundi D25 and molecular insight into its collagenolytic mechanism. Journal of Biological Chemistry, 289(9):6041-6053, doi: 10.1074/jbc.M113.513861
    Rawlings N D, Barrett A J, Thomas P D, et al. 2018. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Research, 46(D1):D624-D632, doi: 10.1093/nar/gkx1134
    Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(Web server issue):W320-W324, doi: 10.1093/nar/gku316
    Saitou N, Nei M. 1987. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4):406-425, doi: 10.1093/oxfordjournals.molbev.a040454
    Schindler C A, Schuhardt V T. 1964. Lysostaphin:A new bacteriolytic agent for the Staphylococcus. Proceedings of the National Academy of Sciences of the United States of America, 51(3):414-421, doi: 10.1073/pnas.51.3.414
    Talbot V, Bianchi M. 1997. Bacterial proteolytic activity in sediments of the Subantarctic Indian Ocean sector. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 44(5):1069-1084, doi: 10.1016/S0967-0645(96)00107-5
    Tamura K, Peterson D, Peterson N, et al. 2011. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10):2731-2739, doi: 10.1093/molbev/msr121
    Tsuboi S, Yamamura S, Imai A, et al. 2014. Linking temporal changes in bacterial community structures with the detection and phylogenetic analysis of neutral metalloprotease genes in the sediments of a hypereutrophic lake. Microbes and Environments, 29(3):314-321, doi: 10.1264/jsme2.me14064
    Yan Bingqiang, Chen Xiulan, Hou Xiaoyan, et al. 2009. Molecular analysis of the gene encoding a cold-adapted halophilic subtilase from deep-sea psychrotolerant bacterium Pseudoalteromonas sp. SM9913:cloning, expression, characterization and function analysis of the C-terminal PPC domains. Extremophiles, 13(4):725-733, doi: 10.1007/s00792-009-0263-1
    Yang Xiangsheng, Chen Xinglin, Xu Xianzhong, et al. 2011. Cold-adaptive alkaline protease from the psychrophilic Planomicrobium sp. 547:enzyme characterization and gene cloning. Advances in Polar Science, 22(1):49-54, doi: 10.3724/SP.J.1085.2011.00049
    Yang Jian, Li Jie, Mai Zhimao, et al. 2013. Purification, characterization, and gene cloning of a cold-adapted thermolysin-like protease from Halobacillus sp. SCSIO 20089. Journal of Bioscience and Bioengineering, 115(6):628-632, doi: 10.1016/j.jbiosc.2012.12.013
    Zhang Xiying, Han Xiaoxu, Chen Xiulan, et al. 2015. Diversity of cultivable protease-producing bacteria in sediments of Jiaozhou Bay, China. Frontiers in Microbiology, 6:1021, doi: 10.3389/fmicb.2015.01021
    Zhao Huilin, Chen Xiulan, Xie Binbin, et al. 2012. Elastolytic mechanism of a novel M23 metalloprotease pseudoalterin from deep-sea Pseudoalteromonas sp. CF6-2:cleaving not only glycyl bonds in the hydrophobic regions but also peptide bonds in the hydrophilic regions involved in cross-linking. Journal of Biological Chemistry, 287(47):39710-39720, doi: 10.1074/jbc.M112.405076
    Zhao Guoyan, Chen Xiulan, Zhao Huilin, et al. 2008. Hydrolysis of insoluble collagen by deseasin MCP-01 from deep-sea Pseudoalteromonas sp. SM9913:collagenolytic characters, collagen-binding ability of C-terminal polycystic kidney disease domain, and implication for its novel role in deep-sea sedimentary particulate organic nitrogen degradation. Journal of Biological Chemistry, 283(52):36100-36107, doi: 10.1074/jbc.M804438200
    Zhou Mingyang, Chen Xiulan, Zhao Huilin, et al. 2009. Diversity of both the cultivable protease-producing bacteria and their extracellular proteases in the sediments of the South China sea. Microbial Ecology, 58(3):582-590, doi: 10.1007/s00248-009-9506-z
    Zhou Mingyang, Wang Guanglong, Li Dan, et al. 2013. Diversity of both the cultivable protease-producing bacteria and bacterial extracellular proteases in the coastal sediments of King George Island, Antarctica. PLoS One, 8(11):e79668, doi: 10.1371/journal.pone.0079668
    Zimmerman A E, Martiny A C, Allison S D. 2013. Microdiversity of extracellular enzyme genes among sequenced prokaryotic genomes. The ISME Journal, 7(6):1187-1199, doi: 10.1038/ismej.2012.176
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (325) PDF downloads(100) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return