Home > 2019, 38(8) > A 10-year wave energy resource assessment and trends of Indonesia based on satellite observations

Citation: Amiruddin, Agustinus Ribal, Khaeruddin, Sri Astuti Thamrin. A 10-year wave energy resource assessment and trends of Indonesia based on satellite observations. ACTA OCEANOLOGICA SINICA, 2019, 38(8): 86-93. doi: 10.1007/s13131-019-1400-z

2019, 38(8): 86-93. doi: 10.1007/s13131-019-1400-z

A 10-year wave energy resource assessment and trends of Indonesia based on satellite observations

1.  Department of Physics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar 90245, Indonesia
2.  Department of Mathematics, Faculty of Mathematics and Natural Sciences, Hasanuddin University, Makassar 90245, Indonesia

Corresponding author: Agustinus Ribal, agus.ribal@gmail.com

Received Date: 2018-04-02
Web Publishing Date: 2019-08-01

Fund Project: The Minister for Research, Technology and Higher Education, Indonesia under contract No. 2611/UN4.21/LK.23/2017 through Research and Community Service Institution at Hasanuddin University, Makassar, Indonesia.

Wave energy resource assessment and trends around Indonesian’s ocean has been carried out by means of analyzing satellite observations. Wave energy flux or wave power can be approximated using parameterized sea states derived from satellite data. Unfortunately, only some surface parameters can be measured from remote sensing satellites, for example for ocean surface waves: significant wave height. Others, like peak wave period and energy period are not available, but can instead be estimated using empirical models. The results have been assessed by meteorological season. The assessment shows clearly where and when the wave power resource is promising around Indonesian’s ocean. The most striking result was found from June to August, in which about 30–40 kW/m (the 90th percentile: 40–60 kW/m, the 99th percentile: 50–70 kW/m) wave power energy on average has been found around south of the Java Island. The significant trends of wave energy at the 95% level have also been studied and it is found that the trends only occurred for the extreme cases, which is the 99th percentile (i.e., highest 1%). Wave power energy could increase up to 150 W/m per year. The significant wave heights and wave power have been compared with the results obtained from global wave model hindcast carried out by wave model WAVEWATCH III. The comparisons indicated excellent agreements.

Key words: wave power energy , trends , ENVISAT altimeter , significant wave height , wave period

[1]

Ardhuin F, Rogers E, Babanin A V, et al. 2010. Semiempirical dissipation source functions for ocean waves. Part I: definition, calibration, and validation. Journal of Physical Oceanography, 40(9): 1917–1941.

[2]

Babanin Alexander, Zieger Stefan, Ribal Agustinus. 2014a. Satellite Observations of Waves in the Arctic Ocean. 22nd IAHR International Symposium on Ice. Singapore: International Association for Hydro-Environment Engineering and Research (IAHR), 798–805

[3]

Babanin Alexander, Zieger Stefan, Ribal Agustinus. 2014b. Ocean waves in the Arctic: observations and trends. International Symposium on Sea Ice in a Changing Environment. Hobart, Australia: The International Glaciological Society, 69A576

[4]

BPPT. 2014. Outlook Energi Indonesia 2014. Jakarta: Badan Pengkajian dan Penerapan Teknologi (BPPT), 793

[5]

Cornett A M. 2008. A global wave energy resource assessment. Sea Technology, 50(4): 59

[6]

Durrant T H, Greenslade D J M, Hemer M A, et al. 2014. A Global Wave Hindcast Focussed on the Central and South Pacific. Melbourne: Bureau of Meteorology Australia and CSIRO

[7]

Gommenginger C, Cotton D, Srokosz M, et al. 2005. Ocean wave period from satellite altimeters. In: Lacoste H, Ouwehand L, eds. Proceedings of the 2004 Envisat & ERS Symposium. Salzburg, Austria: CD-Rom

[8]

Gommenginger C P, Srokosz M A, Challenor P G, et al. 2003. Measuring ocean wave period with satellite altimeters: A simple empirical model. Geophysical Research Letters, 30(22): 2150

[9]

Gommenginger C P, Srokosz M A, Challenor P G, et al. 2004. Measuring ocean wave period and wave height with satellite altimeters. In: Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. Vancouver, British Columbia, Canada: The American Society of Mechanical Engineers (ASME), 353-360

[10]

Hagerman G. 2001. Southern new england wave energy resource potential. In: Building Energy 2001. Boston, MA, USA: Tufts University, 13

[11]

Hemer M A, Zieger S, Durrant T, et al. 2017. A revised assessment of Australia’s national wave energy resource. Renewable Energy, 114: 85–107.

[12]

Kendall M G. 1955. Rank Correlation Methods. 2nd ed. London: Charles Griffin & Co. Ltd, 936

[13]

Mann H B. 1945. Nonparametric tests against trend. Econometrica, 13(3): 245–259.

[14]

Mudho Yulistyo. 2011. Marine and Fisheries in Figures 2011. Jakarta: Ministry of Marine Affairs and Fisheries

[15]

Peacock D. 2015. IEC TS 62600-101: 2015: Marine energy-Wave, tidal and other water current converters-Part 101: Wave energy resource assessment and characterization. Geneva, Switzerland: The International Electrotechnical Commission, 1–42

[16]

Pontes M T. 1998. Assessing the European wave energy resource. Journal of Offshore Mechanics and Arctic Engineering, 120(4): 226–231.

[17]

Prasodjo E, Nurzaman H, Walujanto, et al. 2016. Indonesia Energy Outlook 2016. Jakarta: National Energy Council, 940

[18]

Purnamasari R, Ribal A, Kusuma J. 2018. Prediction of tidal elevations and barotropic currents in the gulf of bone. Journal of Physics: Conference Series, 979: 012071.

[19]

Quartly G D, Srokosz M A, McMillan A C. 2001. Analyzing altimeter artifacts: statistical properties of ocean waveforms. Journal of Atmospheric and Oceanic Technology, 18(12): 2074–2091.

[20]

Queffeulou P, Croizé-Fillon D. 2012. Global altimeter SWH data set-version 9. 0. Plouzané, France: IFREMER

[21]

Rascle N, Ardhuin F, Queffeulou P, et al. 2008. A global wave parameter database for geophysical applications. Part 1: Wave-current-turbulence interaction parameters for the open ocean based on traditional parameterizations. Ocean Modelling, 25(3–4): 154–171.

[22]

Ribal A, Amir A K, Toaha S, et al. 2017. Tidal current energy resource assessment around buton island, southeast Sulawesi, Indonesia. International Journal of Renewable Energy Research, 7(2): 857–865

[23]

Ribal A, Zieger S. 2016. Wave energy resource assessment based on satellite observations around Indonesia. AIP Conference Proceedings, 1737: 060001.

[24]

Sen P K. 1968. Estimates of the regression coefficient based on kendall’s tau. Journal of the American Statistical Association, 63(324): 1379–1389.

[25]

Tolman H L. 2009. User manual and system documentation of WAVEWATCH III version 3. 14. Technical note, MMAB Contribution. Camp Springs, USA: National Centers for Environmental Prediction, 220

[26]

Vinoth J, Young I R. 2011. Global estimates of extreme wind speed and wave height. Journal of Climate, 24(6): 1647–1665.

[27]

Wan Yong, Zhang Jie, Meng Junmin, et al. 2016. Study on wave energy resource assessing method based on altimeter data-A case study in Northwest Pacific. Acta Oceanologica Sinica, 35(3): 117–129.

[28]

Young I R, Zieger S, Babanin A V. 2011. Global trends in wind speed and wave height. Science, 332(6028): 451–455.

[29]

Zheng C W, Pan J, Li J X. 2013. Assessing the China Sea wind energy and wave energy resources from 1988 to 2009. Ocean Engineering, 65: 39–48.

[30]

Zieger S. 2010. Long term trends in ocean wind speed and wave height [dissertation]. Melbourne: Swinburne University of Technology

[31]

Zieger S, Babanin A V, Erick R W, et al. 2015. Observation-based source terms in the third-generation wave model WAVEWATCH. Ocean Modelling, 96: 2–25.

[32]

Zieger S, Babanin A V, Ribal A. 2013. Wave climate in the marginal ice zone as observed by altimeters. In: American Geophysical Union Fall Meeting. San Francisco, CA, US: AGU

[33]

Zieger S, Babanin A V, Young I R. 2014. Changes in ocean surface wind with a focus on trends in regional and monthly mean values. Deep Sea Research Part I: Oceanographic Research Papers, 86: 56–67.

[34]

Zieger S, Vinoth J, Young I R. 2009. Joint calibration of multiplatform altimeter measurements of wind speed and wave height over the Past 20 Years. Journal of Atmospheric and Oceanic Technology, 26(12): 2549–2564.

[1]

Chenqing FAN, Xiaochen WANG, Xudong ZHANG, Dong GAO. A newly developed ocean significant wave height retrieval method from Envisat ASAR wave mode imagery. ACTA OCEANOLOGICA SINICA, 2019, 38(9): 120-127. doi: 10.1007/s13131-019-1480-2

[2]

Jichao WANG, Jie ZHANG, Jungang YANG, Wendi BAO, Guoli WU, Qifeng REN. An evaluation of input/dissipation terms in WAVEWATCH III using in situ and satellite significant wave height data in the South China Sea. ACTA OCEANOLOGICA SINICA, 2017, 36(3): 20-25. doi: 10.1007/s13131-017-1038-7

[3]

Dong GAO, Yongxin LIU, Junmin MENG, Yongjun JIA, Chenqing FAN. Estimating significant wave height from SAR imagery based on an SVM regression model. ACTA OCEANOLOGICA SINICA, 2018, 37(3): 103-110. doi: 10.1007/s13131-018-1203-7

[4]

Yexin SHENG, Weizeng SHAO, Shuai ZHU, Jian SUN, Xinzhe YUAN, Shuiqing LI, Jian SHI, Juncheng ZUO. Validation of significant wave height retrieval from co-polarization Chinese Gaofen-3 SAR imagery using an improved algorithm. ACTA OCEANOLOGICA SINICA, 2018, 37(6): 1-10. doi: 10.1007/s13131-018-1217-1

[5]

Shuzong HAN, Yongbin FAN, Yangyang DONG, Shuangquan WU. A study on the relationships between the wave height and the El Niño in the north area of the South China Sea. ACTA OCEANOLOGICA SINICA, 2017, 36(5): 44-50. doi: 10.1007/s13131-017-1059-2

[6]

Hui SU, Chunlei WEI, Shaocai JIANG, Peiliang LI, Fangguo ZHAI. Revisiting the seasonal wave height variability in the South China Sea with merged satellite altimetry observations. ACTA OCEANOLOGICA SINICA, 2017, 36(11): 38-50. doi: 10.1007/s13131-017-1073-4

[7]

Yao XU, Fan BI, Jinbao SONG, Hailun HE. The temporal and spatial variations in the Pacific wind and wave fields for the period 2002–2011. ACTA OCEANOLOGICA SINICA, 2017, 36(3): 26-36. doi: 10.1007/s13131-017-1039-6

[8]

Bo LIN, Weizeng SHAO, Xiaofeng LI, Huan LI, Xiaoqing DU, Qiyan JI, Lina CAI. Development and validation of an ocean wave retrieval algorithm for VV-polarization Sentinel-1 SAR data. ACTA OCEANOLOGICA SINICA, 2017, 36(7): 95-101. doi: 10.1007/s13131-017-1089-9

[9]

Hongli MIAO, Yujie JING, Yongjun JIA, Mingsen LIN, Guoshou ZHANG, Guizhong WANG. Nonparametric estimations of the sea state bias for a radar altimeter. ACTA OCEANOLOGICA SINICA, 2017, 36(9): 108-113. doi: 10.1007/s13131-017-1116-x

[10]

Yawen KONG, Xiuzhi ZHANG, Lifang SHENG, Baozhang CHEN. Validation and application of multi-source altimeter wave data in China’s offshore areas. ACTA OCEANOLOGICA SINICA, 2016, 35(11): 86-96. doi: 10.1007/s13131-016-0951-5

[11]

Hao ZHOU, Biyang WEN. Wave height estimation using the singular peaks in the sea echoes of high frequency radar. ACTA OCEANOLOGICA SINICA, 2018, 37(1): 108-114. doi: 10.1007/s13131-018-1161-0

[12]

Young-Kwang Choi, Seung-Nam Seo, Jin-Yong Choi, Fengyan Shi, Kwang-Soon Park. Wave prediction in a port using a fully nonlinear Boussinesq wave model. ACTA OCEANOLOGICA SINICA, 2019, 38(7): 36-47. doi: 10.1007/s13131-019-1456-2

[13]

Shaotong ZHANG, Yonggang JIA, Zhenhao WANG, Mingzheng WEN, Fang LU, Yaqi ZHANG, Xiaolei LIU, Hongxian SHAN. Wave flume experiments on the contribution of seabed fluidization to sediment resuspension. ACTA OCEANOLOGICA SINICA, 2018, 37(3): 80-87. doi: 10.1007/s13131-018-1143-2

[14]

Fangqiang CHANG, Zhonglei SHU. A model for calculating the erosion distance of soft sea cliff under wave loading. ACTA OCEANOLOGICA SINICA, 2018, 37(7): 55-63. doi: 10.1007/s13131-018-1245-x

[15]

Fuxing HAN, Kun WANG, Jianguo SUN. The influence of irregular seafloor topography on the seismic wave field and migration imaging. ACTA OCEANOLOGICA SINICA, 2019, 38(3): 151-158. doi: 10.1007/s13131-019-1407-5

[16]

Dongling ZHANG, Juan ZHU, Xu LU, Ming ZHANG. Wave packet solutions in a bounded equatorial ocean and its interannual and decadal variabilities. ACTA OCEANOLOGICA SINICA, 2019, 38(3): 45-59. doi: 10.1007/s13131-019-1398-2

[17]

Ke Qu, Fengqin Zhu, Wenhua Song. A novel method for internal wave monitoring based on expansion of the sound speed profile. ACTA OCEANOLOGICA SINICA, 2019, 38(4): 183-189. doi: 10.1007/s13131-019-1422-6

[18]

Vincent Jayaraj Joevivek, Nainarpandian Chandrasekar, Ramakrishnan Jayangondaperumal, Vikram Chandra Thakur, Krishnan Shree Purniema. An interpretation of wave refraction and its influence on foreshore sediment distribution. ACTA OCEANOLOGICA SINICA, 2019, 38(5): 151-160. doi: 10.1007/s13131-019-1446-y

[19]

Peng BAI, Jingling YANG, Shuwen ZHANG, Lingling XIE, Junshan WU. Upwelling off the west coast of Hainan Island: sensitivity to wave-mixing. ACTA OCEANOLOGICA SINICA, 2019, 38(10): 1-9.

[20]

Qian GU, Guoxing HUANG, Ningchuan ZHANG, Longxiang LI, Zhong’an SHAO. Experimental study on the wave loads of twin-plate breakwater under oblique waves. ACTA OCEANOLOGICA SINICA, 2016, 35(12): 100-109. doi: 10.1007/s13131-016-0925-7

Metrics
  • PDF Downloads()
  • Abstract Views()
  • HTML Views()
Catalog

Figures And Tables

A 10-year wave energy resource assessment and trends of Indonesia based on satellite observations

Amiruddin, Agustinus Ribal, Khaeruddin, Sri Astuti Thamrin