Home > 2019, 38(8) > An improved frequency shift method for ATI-SAR flat earth phase removal

Citation: Yubin Zhang, Jie Zhang, Junmin Meng, Chenqing Fan. An improved frequency shift method for ATI-SAR flat earth phase removal. ACTA OCEANOLOGICA SINICA, 2019, 38(8): 94-100. doi: 10.1007/s13131-019-1426-2

2019, 38(8): 94-100. doi: 10.1007/s13131-019-1426-2

An improved frequency shift method for ATI-SAR flat earth phase removal

1.  First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
2.  College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China

Corresponding author: Chenqing Fan, fanchenqing@fio.org.cn

Received Date: 2018-05-04
Web Publishing Date: 2019-08-01

Fund Project: The National Key Research and Development Program of China under contract No. 2016YFC1402703; the National Natural Science Foundation of China under contract Nos 61471136 and 61501130.

An improved frequency shift method is proposed to remove the flat earth phase in ATI-SAR ocean surface motion detection in this study. First, two conventional flat earth effect removal methods (i.e., the frequency shift method and the orbital parameter method) are introduced and compared. Then, two improvements to frequency shift method are suggested. In the first improvement, the phase diagram is divided into several sub-blocks to calculate the phase fringe frequency. In the second improvement, a function between the phase of land regions and position is fitted to correct the residual flat earth phase based on the phase of the land regions that tend toward zero in an along-track interferogram. It is found that the improved frequency shift method is greatly improved; and it agrees well with the orbital parameter method, and achieves similar accuracy.

Key words: flat earth phase , ATI-SAR , frequency shift , orbital parameter

[1]

Ai Bin, Li Xia. 2009. An analysis of different InSAR flattening algorithms and their influence on DEM accuracy. Remote Sensing for Land & Resources (in Chinese), 21(3): 12–18

[2]

Bamler R, Hartl P. 1998. Synthetic aperture radar interferometry. Inverse Problems, 14(4): R1–R54.

[3]

Cao Yongxing, Fan Zhong, Chen Yan, et al. 2013. Flat earth removal and baseline estimation based on orbit parameters using Radarsat-2 image. In: Proceedings of 2013 IEEE Proceedings of the Geoscience and Remote Sensing Symposium. Melbourne, VIC, Australia: IEEE, 346–349

[4]

Gatelli F, Guamieri A M, Parizzi F, et al. 1994. The wavenumber shift in SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 32(4): 855–865.

[5]

Geudtner D, Schwäbisch M. 1996. An algorithm for precise reconstruction of InSAR imaging geometry: application to "Flat-Earth" phase removal, phase-to-height conversion and geocoding of InSAR-derived DEMs. In: Proceedings of the EUSAR'96-Konferenz. Königswinter, Germany: EUSAR, 249–252

[6]

Kimura H, Todo M. 1997. Baseline estimation using ground points for interferometric SAR. In: Proceedings of 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing—A Scientific Vision for Sustainable Development. Singapore, Singapore: IEEE, 442–444

[7]

Kohlhase A O, Feigl K L, Massonnet D. 2003. Applying differential InSAR to orbital dynamics: a new approach for estimating ERS trajectories. Journal of Geodesy, 77(9): 493–502.

[8]

Krieger G, Moreira A, Fiedler H, et al. 2007. TanDEM-X: a satellite formation for high-resolution SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 45(11): 3317–3341.

[9]

Moreira J, Schwabisch M, Fornaro G, et al. 1995. X-SAR interferometry: first results. IEEE Transactions on Geoscience and Remote Sensing, 33(4): 950–956.

[10]

Peng S R, He K X, Wang Y N, et al. 2009. A high accurate approach for InSAR flat earth effect removal. In: Proceedings of 2009 International Conference on Measuring Technology and Mechatronics Automation. Zhangjiajie, Hunan, China: IEEE, 742–745

[11]

Romeiser R, Runge H, Suchandt S, et al. 2014. Quality assessment of surface current fields from TerraSAR-X and TanDEM-X along-track interferometry and Doppler centroid analysis. IEEE Transactions on Geoscience and Remote Sensing, 52(5): 2759–2772.

[12]

Romeiser R, Suchandt S, Runge H, et al. 2010. First analysis of TerraSAR-X along-track InSAR-derived current fields. IEEE Transactions on Geoscience and Remote Sensing, 48(2): 820–829.

[13]

Rosen P A, Hensley S, Joughin I R, et al. 2000. Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3): 333–382.

[14]

Stangl M, Werninghaus R, Schweizer B, et al. 2006. TerraSAR-X technologies and first results. IEE Proceedings-Radar, Sonar and Navigation, 153(2): 86–95.

[15]

Suchandt S, Runge H. 2015. Ocean surface observations using the TanDEM-X satellite formation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(11): 5096–5105.

[16]

Wang Lucai, Wang Yaonan, Dai Yuxing. 2004. An improving algorithm of eliminating the horizontal ground effect of phase interference graph in InSAR imaging. Journal of Natural Science of Hunan Normal University (in Chinese), 27(3): 51–55

[17]

Werninghaus R, Buckreuss S. 2010. The TerraSAR-X mission and system design. IEEE Transactions on Geoscience and Remote Sensing, 48(2): 606–614.

[18]

Yoon Y T, Eineder M, Yague-Martinez N, et al. 2009. TerraSAR-X precise trajectory estimation and quality assessment. IEEE Transactions on Geoscience and Remote Sensing, 47(6): 1859–1868.

[19]

Zebker H A, Rosen P A, Hensley S. 1997. Atmospheric effects in interferometric synthetic aperture radar surface deformation and topographic maps. Journal of Geophysical Research: Solid Earth, 102(B4): 7547–7563.

[1]

Hui ZHANG, Yongxin LIU, Yonggang JI, Linglin WANG. Vessel fusion tracking with a dual-frequency high-frequency surface wave radar and calibrated by an automatic identification system. ACTA OCEANOLOGICA SINICA, 2018, 37(7): 117-126. doi: 10.1007/s13131-018-1250-0

[2]

Hao ZHOU, Biyang WEN. Wave height estimation using the singular peaks in the sea echoes of high frequency radar. ACTA OCEANOLOGICA SINICA, 2018, 37(1): 108-114. doi: 10.1007/s13131-018-1161-0

[3]

Ying BAO, Yangchun LI. Simulations of dissolved oxygen concentration in CMIP5 Earth system models. ACTA OCEANOLOGICA SINICA, 2016, 35(12): 28-37. doi: 10.1007/s13131-016-0959-x

[4]

Zhaoyun WANG, Fangguo ZHAI, Peiliang LI. A shift in the upper-ocean temperature trends in the South China Sea since the late 1990s. ACTA OCEANOLOGICA SINICA, 2016, 35(11): 44-51. doi: 10.1007/s13131-016-0947-1

[5]

Tianyu WANG, Yan DU, Xiaomei LIAO. The regime shift in the 1960s and associated atmospheric change over the southern Indian Ocean. ACTA OCEANOLOGICA SINICA, 2017, 36(1): 1-8. doi: 10.1007/s13131-017-0987-1

[6]

Longjiang MU, Jinping ZHAO, Wenli ZHONG. Regime shift of the dominant factor for halocline depth in the Canada Basin during 1990–2008. ACTA OCEANOLOGICA SINICA, 2017, 36(1): 35-43. doi: 10.1007/s13131-016-0883-0

[7]

Jia SUN, Guihua WANG, Juncheng ZUO, Zheng LING, Dahai LIU. Role of surface warming in the northward shift of tropical cyclone tracks over the South China Sea in November. ACTA OCEANOLOGICA SINICA, 2017, 36(5): 67-72. doi: 10.1007/s13131-017-1061-8

[8]

Ye ZHANG, Chaolun LI, Guang YANG, Yanqing WANG, Zhencheng TAO, Yongshan ZHANG, Aijun WANG. Ontogenetic diet shift in Antarctic krill (Euphausia superba) in the Prydz Bay: a stable isotope analysis. ACTA OCEANOLOGICA SINICA, 2017, 36(12): 67-78. doi: 10.1007/s13131-017-1049-4

[9]

Zuowen JIN, Changsheng ZUO, Zhizu WANG. Impact of Phase III Project of Maji Mountain Port on sediment siltation in adjacent sea area. ACTA OCEANOLOGICA SINICA, 2017, 36(12): 111-118. doi: 10.1007/s13131-017-1074-3

[10]

Shasha SONG, Chaofang ZHAO, Wei AN, Xiaofeng LI, Chen WANG. Analysis of impacting factors on polarimetric SAR oil spill detection. ACTA OCEANOLOGICA SINICA, 2018, 37(11): 77-87. doi: 10.1007/s13131-018-1335-9

[11]

Yong SHI, Zhishuai LIU, Jianhua GAO, Yang YANG, Yaping WANG. The response of sedimentary record to catchment changesinduced by human activities in the western intertidal flat ofYalu River Estuary, China. ACTA OCEANOLOGICA SINICA, 2017, 36(4): 54-63. doi: 10.1007/s13131-016-0941-7

[12]

Yunfeng ZHANG, Zhenke ZHANG, Huachun HE, Yingying CHEN, Songliu JIANG, Hang REN. Processes of small-scale tidal flat accretion and salt marsh changes on the plain coast of Jiangsu Province, China. ACTA OCEANOLOGICA SINICA, 2017, 36(4): 80-86. doi: 10.1007/s13131-017-0971-9

[13]

Li LI, Taoyan YE, Zhiguo HE, Yuezhang XIA. A numerical study on the effect of tidal flat’s slope on tidal dynamics in the Xiangshan Bay, China. ACTA OCEANOLOGICA SINICA, 2018, 37(9): 29-40. doi: 10.1007/s13131-018-1263-8

[14]

Bo LIN, Weizeng SHAO, Xiaofeng LI, Huan LI, Xiaoqing DU, Qiyan JI, Lina CAI. Development and validation of an ocean wave retrieval algorithm for VV-polarization Sentinel-1 SAR data. ACTA OCEANOLOGICA SINICA, 2017, 36(7): 95-101. doi: 10.1007/s13131-017-1089-9

[15]

Mingsen LIN, Xiaomin YE, Xinzhe YUAN. The first quantitative joint observation of typhoon by Chinese GF-3 SAR and HY-2A microwave scatterometer. ACTA OCEANOLOGICA SINICA, 2017, 36(11): 1-3. doi: 10.1007/s13131-017-1133-9

[16]

Dong GAO, Yongxin LIU, Junmin MENG, Yongjun JIA, Chenqing FAN. Estimating significant wave height from SAR imagery based on an SVM regression model. ACTA OCEANOLOGICA SINICA, 2018, 37(3): 103-110. doi: 10.1007/s13131-018-1203-7

[17]

Yexin SHENG, Weizeng SHAO, Shuai ZHU, Jian SUN, Xinzhe YUAN, Shuiqing LI, Jian SHI, Juncheng ZUO. Validation of significant wave height retrieval from co-polarization Chinese Gaofen-3 SAR imagery using an improved algorithm. ACTA OCEANOLOGICA SINICA, 2018, 37(6): 1-10. doi: 10.1007/s13131-018-1217-1

Metrics
  • PDF Downloads()
  • Abstract Views()
  • HTML Views()
Catalog

Figures And Tables

An improved frequency shift method for ATI-SAR flat earth phase removal

Yubin Zhang, Jie Zhang, Junmin Meng, Chenqing Fan