Mantha Gopikrishna, Al-Sofyani Abdulmohsin A., Ali M Al-Aidaroos, Crosby Michael P. Zooneuston and zooplankton abundance and diversity in relation to spatial and nycthemeral variations in the Gulf of Aqaba and northern Red Sea[J]. Acta Oceanologica Sinica, 2019, 38(12): 59-72. doi: 10.1007/s13131-019-1427-1
Citation: Mantha Gopikrishna, Al-Sofyani Abdulmohsin A., Ali M Al-Aidaroos, Crosby Michael P. Zooneuston and zooplankton abundance and diversity in relation to spatial and nycthemeral variations in the Gulf of Aqaba and northern Red Sea[J]. Acta Oceanologica Sinica, 2019, 38(12): 59-72. doi: 10.1007/s13131-019-1427-1

Zooneuston and zooplankton abundance and diversity in relation to spatial and nycthemeral variations in the Gulf of Aqaba and northern Red Sea

doi: 10.1007/s13131-019-1427-1
  • Received Date: 2018-09-04
  • Zooplankton and zooneuston observations were made at seven stations (four from the Gulf of Aqaba and three from the northern Red Sea), during September and October 2016. The main objective of this study was to assess the variability of nycthemeral fauna in relation to the sampling methods using two different types of nets namely, WP2 net and Neuston net along the two study sites, i.e., the Gulf of Aqaba and the northern Red Sea. Zooplankton was sampled vertically using a standard WP2 net from a depth of 200 m to the surface, whereas zooneuston was made using a standard Neuston net from a depth of 0-10 cm of the water surface. Total zooplankton density was maximum during night time ((617.83 ±201.84) ind./m3) at the Gulf of Aqaba and total zooneuston was maximum during night at the northern Red Sea ((60.94±29.48) ind./m3), respectively. The most abundant taxa were Copepoda, Gastropoda, Bivalva, Chaetognatha, Tunicata and Ostracoda. The abundance was almost 50% higher at night time at both the Gulf of Aqaba and the northern Red Sea. Overall, 30 taxa covering 10 phyla and 27 taxa covering 8 phyla were recorded in the Gulf of Aqaba and the northern Red Sea.
  • 加载中
  • [1] ?Aamer M A, El-Sherbiny M M, Gab-Alla A A F A, et al. 2006. Studies on the ecology of zooplankton standing crop of Sharm El-Maiya Bay, Sharm El-Sheikh, northern Red Sea, Egypt. Catrina, 1(1):73-80
    [2] Almeida Prado-Por M S. 1983. The diversity and dynamics of Calanoida (Copepoda) in the northern Gulf of Elat (Aqaba), Red Sea. Oceanologica Acta, 6:139-145
    [3] Almeida Prado-Por M S. 1985. Distribution of calanoida copepoda along the gulf of elat (Aqaba). Rap Comm Int Mer Médit, 29:249-252
    [4] Almeida Prado-Por M S. 1990. A diel cycle of vertical distribution of the Calanoidea (Crustacea:Copepoda) in the northern Gulf of Aqaba (Elat). Bulletin de l'Institut Océanographique, Monaco, Numéro Spécial, 7:109-116
    [5] Al-Najjar T. 2002. Pelagic copepod diversity in the Gulf of Aqaba (Red Sea). Lebanese Science Journal, 3(1):3-16
    [6] Al-Najjar T. 2005. Seasonal and spatial variations in mesozooplankton biomass in the northern Gulf of Aqaba. Zoology in the Middle East, 34(1):87-92, doi: 10.1080/09397140.2005.10638087
    [7] Al-Najjar T, Rasheed M. 2005. Zooplankton biomass in the most northern tip of the Gulf of Aqaba, a case study. Lebanese Science Journal, 6(2):3-10
    [8] Al-Najjar T, El-Sherbiny M M. 2008. Spatial and seasonal variations in biomass and size structure of zooplankton in coastal waters of the Gulf of Aqaba. Jordan Journal of Biological Sciences, 1(2):55-59
    [9] Anger K. 2001. The Biology of Decapod Crustacean Larvae. Boca Raton:CRC Press
    [10] Arnemo R. 1965. Limnological studies in Hyttodamman. 3-Zooplankton. Drottinghon:International Freshwater Research
    [11] Beckmann W. 1984. Mesozooplankton distribution on a transect from the Gulf of Aden to the central Red Sea during the winter monsoon. Oceanologica Acta, 7:87-102
    [12] Boltovskoy D. 1999. South Atlantic Zooplankton. Volume 1 and 2. Leiden:Backhuys Publishers, 1–868, 869–1706
    [13] Bottger R. 1985. Untersuchungen zur Verteilung der kleinen Metazoa im Roten Meer, unter besonderer Berücksichtigung cyclopoider und harpacticoider Copepoden[dissertation]. Hamburg:Universitat Hamburg
    [14] Böttger R. 1987. The vertical distribution of micro-and small mesozooplankton in the central Red Sea. Biological Oceanography, 4:383-402
    [15] Bottger-Schnack R. 1995. Summer distribution of micro-and small mesozooplankton in the Red Sea and Gulf of Aden, with special reference to non-calanoid copepods. Marine Ecological Progress Series, 118(1-3):81-102
    [16] Böttger-Schnack R. 1990. Community structure and vertical distribution of cyclopoid copepods in the Red Sea:II. Aspects of seasonal and regional differences. Marine Biology, 106(3):487-501, doi: 10.1007/BF01344329
    [17] Böttger-Schnack R. 1999. Taxonomy of Oncaeidae (Copepoda, Poecilostomatoida) from the Red Sea:I. 11 species of Triconia gen. nov. and a redescription of T. similis (Sars) comb. nov. from Norwegian waters. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 96:37-128
    [18] Böttger-Schnack R. 2000. Taxonomy of Oncaeidae (Copepoda, Poecilostomatoida) from the Red Sea:IV. First record of the male of Triconia recta Böttger-Schnack, with notes on its distribution. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 97:67-76
    [19] Böttger-Schnack R. 2001. Taxonomy of Oncaeidae (Copepoda:Poecilostomatoi-da) from the Red Sea:II. Seven species of Oncaea s. str. Bulletin of Natural History Museum London (Zoology), 67:25-84
    [20] Böttger-Schnack R. 2002. Taxonomy of Oncaeidae (Copepoda, Poecilostomatoida) from the Red Sea:VI. Morphology and zoogeography of Oncaea bispinosa sp. nov., a sistertaxon of O. zernovi Shmeleva. Journal of Plankton Research, 24(11):1107-1129
    [21] Böttger-Schnack R. 2003. Taxonomy of Oncaeidae (Copepoda, Poecilostomatoida) from the Red Sea:V. Three species of Spinoncaea gen. nov. (ivlevi-group), with notes on zoogeographical distribution. Zoological Journal of the Linnean Society, 137(2):187-226
    [22] Böttger-Schnack R. 2005. Taxonomy of Oncaeidae (Copepoda, Cyclopoida s. l.) from the Red Sea:VII. Oncaea cristata, a new species related to the ovalis-complex, and a revision of O. ovalis Shmeleva and O. bathyalis Shmeleva from the Mediterranean. Cahiers de Biologie Marine, 46:161-209
    [23] Böttger-Schnack R. 2009. Taxonomy of Oncaeidae (Copepoda, Cyclopoida s. l.) from the Red Sea:IX. Epicalymma bulbosa sp. nov., first record of the genus in the Red Sea. Journal of Plankton Research, 31(9):1027-1043, doi: 10.1093/plankt/fbp051
    [24] Böttger-Schnack R, Hagen W, Schnack-Schiel S B. 2001. The microcopepod fauna in the Gulf of Aqaba, northern Red Sea:species diversity and distribution of Oncaeidae (Poecilostomatoida). Journal of Plankton Research, 23(9):1029-1035, doi: 10.1093/plankt/23.9.1029
    [25] Böttger-Schnack R, Huys R. 2001. Taxonomy of Oncaeidae (Copepoda, Poecilostomatoida) from the Red Sea:III. Morphology and phylogenetic position of Oncaea subtilis Giesbrecht, 1892. Hydrobiologia, 453-454(1):467-481
    [26] Böttger-Schnack R, Schnack D, Hagen W. 2008. Microcopepod community structure in the Gulf of Aqaba and northern Red Sea, with special reference to Oncaeidae. Journal of Plankton Research, 30(5):529-550, doi: 10.1093/plankt/fbn018
    [27] Chihara M, Murano M. 1997. An Illustrated Guide to Marine Plankton in Japan. Tokyo:Tokai University Press, 1574
    [28] Clarke K R, Gorley R N. 2006. Primer v6:User Manual/Tutorial. Plymouth:Primer-E, 190
    [29] Cornils A, Niehoff B, Richter C, et al. 2007a. Seasonal abundance and reproduction of clausocalanid copepods in the northern Gulf of Aqaba (Red Sea). Journal of Plankton Research, 29(1):57-70
    [30] Cornils A, Schnack-Schiel S B, Al-Najjar T, et al. 2007b. The seasonal cycle of the epipelagic mesozooplankton in the northern Gulf of Aqaba (Red Sea). Journal of Marine Systems, 68(1-2):278-292, doi: 10.1016/j.jmarsys.2007.01.001
    [31] Cornils A, Schnack-Schiel S B, Böer M, et al. 2007c. Feeding of Clausocalanids (Calanoida, Copepoda) on naturally occurring particles in the northern Gulf of Aqaba (Red Sea). Marine Biology, 151(4):1261-1274, doi: 10.1007/s00227-006-0569-9
    [32] Cornils A, Schnack-Schiel S B, Hagen W, et al. 2005. Spatial and temporal distribution of mesozooplankton in the Gulf of Aqaba and the northern Red Sea in February/March 1999. Journal of Plankton Research, 27(6):505-518, doi: 10.1093/plankt/fbi023
    [33] Cowles T J, Roman M R, Gauzens A L, et al. 1987. Short-term changes in the biology of a warm-core ring:zooplankton biomass and grazing. Limnology and Oceanography, 32(3):653-664, doi: 10.4319/lo.1987.32.3.0653
    [34] De Almeida e Silva T, Neumann-Leitão S, Schwamborn R, et al. 2003. Diel and seasonal changes in the macrozooplankton community of a tropical estuary in Northeastern Brazil. Revista Brasileira de Zoologia, 20(3):439-446, doi: 10.1590/S0101-81752003000300012
    [35] De Albuquerque Lira S M, De Ávila Teixeira I, De Lima C D M, et al. 2014. Spatial and nycthemeral distribution of the zooneuston off Fernando de Noronha, Brazil. Brazilian Journal of Oceanography, 62(1):35-45, doi: 10.1590/s1679-87592014058206201
    [36] Dorgham M M, El-Sherbiny M M, Hanafi M H. 2012. Vertical distribution of zooplankton in the epipelagic zone off Sharm El-Sheikh, Red Sea, Egypt. Oceanologia, 54(3):473-489, doi: 10.5697/oc.54-3.473
    [37] Echelman T, Fishelson L. 1990. Surface zooplankton dynamics and community structure in the Gulf of Aqaba (Eilat), Red Sea. Marine Biology, 107(1):179-190, doi: 10.1007/BF01313255
    [38] El-Serehy H A, Abd El-Rahman N S. 2004. Distribution patterns of planktonic copepod crustaceans in the coral reef and sandy areas along the Gulf of Aqaba, Red Sea, Egypt. Egyptian Journal of Biology, 6:126-135
    [39] El-Serehy H A, Abd El-Rahman N S, Al-Rasheid K A, et al. 2013. Copepod dynamics in the epipelagic zone of two different regional aquatic ecological basins at the northern Red Sea, Egypt. Life Science Journal, 10(4):212-405
    [40] El-Sherbiny M M. 2009. First record and redescription of Pontella princeps Dana, 1849 (Copepoda:Pontellidae) in the Red Sea with notes on its feeding habits. Catrina, 4(1):11-20
    [41] El-Sherbiny M M, Hanafy M H, Aamer M A. 2007. Monthly variations in abundance and species composition of the epipelagic zooplankton off Sharm El-Sheikh, northern Red Sea. Research Journal of Environmental Science, 1(5):200-210, doi: 10.3923/rjes.2007.200.210
    [42] El-Sherif Z M, Ezz S M A. 2000. Check list of plankton of the northern Red Sea. Pakistan Journal of Marince Science, 9(1-2):61-78
    [43] Fedorina A I, Kornilova G N. 1970. The zooplankton of the Red Sea. Trudy Azovsko-Chernomorskogo Vauchno-Issledovatel'skogo Inst Rybnogo Khozyaistva:Okeanography, 30:48-59
    [44] Fiksen Ø, Giske J. 1995. Vertical distribution and population dynamics of copepods by dynamic optimization. ICES Journal of Marine Science, 52(3-4):483-503, doi: 10.1016/1054-3139(95)80062-X
    [45] Forward R B Jr. 1988. Diel vertical migration:zooplankton photobiology and behavior. Oceanography Marine Biology, 26:361-393
    [46] Gibson R N. 2003. Go with the flow:tidal migration in marine animals. Hydrobiologia, 503(1-3):153-162, doi: 10.1023/B:HYDR.0000008488.33614.62
    [47] Goldman C R, Heron A J. 1983. Limnology. New York:McGraw-Hill, 464
    [48] Gordeyeva K T. 1970. Quantitative distribution of zooplankton in the Red Sea. Okeanologija Moskov, 10:867-871
    [49] Halim Y. 1969. Plankton of the Red Sea. Oceanography and Marine Biology-Annual Reviews, 7:231-275
    [50] Halim Y. 1984. Plankton of the Red Sea and the Arabian gulf. Deep Sea Research Part A. Oceanography Research Papers, 31(6-8):969-982, doi: 10.1016/0198-0149(84)90051-7
    [51] Hempel G, Weikert H. 1972. The neuston of the subtropical and boreal North-eastern Atlantic Ocean. A review. Marine Biology, 13(1):70-88
    [52] Huys R, Böttger-Schnack R. 2007. Taxonomy of Oncaeidae (Copepoda, Poecilostomatoida) from the Red Sea:VIII. Morphology and phylogenetic position of Oncaea tregoubovi Shmeleva, 1968 and the closely related O. prendeli Shmeleva, 1966 from the Mediterranean Sea. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 104:89-127
    [53] Khalil M T, El-Rakman N S A. 1997. Abundance and diversity of surface zooplankton in the Gulf of Aqaba, Red Sea, Egypt. Journal of Plankton Research, 19(7):927-936, doi: 10.1093/plankt/19.7.927
    [54] Kimor B. 1973. Primary productivity in the Indian Ocean. In:Zeitzschel B, ed. The Biology of the Indian Ocean. Berlin:Springer-Verlag, 221–232
    [55] Kürten B, Al-Aidaroos A M, Struck U, et al. 2013. Influence of environmental gradients on C and N stable isotope ratios in coral reef biota of the Red Sea, Saudi Arabia. Journal of Sea Research, 85:379-394
    [56] Kürten B, Khomayis H S, Devassy R, et al. 2015a. Ecohydrographic constraints on biodiversity and distribution of phytoplankton and zooplankton in coral reefs of the Red Sea, Saudi Arabia. Marine Ecology, 36(4):1195-1214, doi: 10.1111/maec.12224
    [57] Kürten B, Al-Aidaroos A M, Kürten S, et al. 2015b. Carbon and nitrogen stable isotope ratios of pelagic zooplankton elucidate ecohydrographic features in the oligotrophic Red Sea. Progress in Oceanography, 140:69-90
    [58] Levanon-Spanier I, Padan E, Reiss Z. 1979. Primary production in a desert-enclosed sea-the Gulf of Elat (Aqaba), Red Sea. Deep Sea Research Part A. Oceanographic Research Papers, 26(6):673-685, doi: 10.1016/0198-0149(79)90040-2
    [59] Liparoto A, Mancinelli G, Belmonte G. 2017. Spatial variation in biodiversity patterns of neuston in the Western Mediterranean and Southern Adriatic Seas. Journal of Sea Research, 129:12-21, doi: 10.1016/j.seares.2017.08.007
    [60] Marcos S A. 1970. Physical and chemical oceanography of the Red Sea. Oceanography and Marine Biology-Annual Reviews, 8:73-202
    [61] Naumann E. 1917. Beiträge zur kenntnis des teichnanno-planktons. II. Über das neuston des Süsswassers. Biol Zentralb, 37(2):98-106
    [62] Nishida S. 1985. Taxonomy and distribution of the family Oithonidae (Copepoda:Cyclopoida) in the Pacific and Indian Oceans. Bulletin of Ocean Research Institute, University of Tokyo, 20:1-167
    [63] Omori M, Ikeda T. 1984. Methods in Marine Zooplankton Ecology. New York:John Wiley and Sons Inc, 372
    [64] Pearman J K, Irigoien X. 2015. Assessment of zooplankton community composition along a depth profile in the central Red Sea. PLoS One, 10(7):e0133487, doi: 10.1371/journal.pone.0133487
    [65] Pielou E C. 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13:131-144, doi: 10.1016/0022-5193(66)90013-0
    [66] Rawlinson K A, Davenport J, Barnes D K A. 2005. Temporal variation in diversity and community structure of a semi-isolated neuston community. Biology and Environment:Proceedings of the Royal Irish Academy, 105B(2):107-122
    [67] Reiss Z, Hottinger L. 1984. The Gulf of Aqaba. Ecological Micropaleontology. Berlin:Springer, 354
    [68] Roe H S J. 1974. Observations on the diurnal vertical migrations of an oceanic animal community. Marine Biology, 28(2):99-113, doi: 10.1007/BF00396301
    [69] Schlacher T A, Wooldridge T H. 1995. Small-scale distribution and variability of demersal zooplankton in a shallow, temperate estuary:tidal and depth effects on species-specific heterogeneity. Cahiers de Biologie Marine, 36(3):211-227
    [70] Schmidt H E. 1973. The vertical distribution and diurnal migration of some zooplankton in the Bay of Eilat (Red Sea). Helgoländer Wissenschaftliche Meeresuntersuchungen, 24(1-4):333-340, doi: 10.1007/BF01609523
    [71] Schnack-Schiel S B, Niehoff B, Hagen W, et al. 2008. Population dynamics and life strategies of Rhincalanus nasutus (Copepoda) at the onset of the spring bloom in the Gulf of Aqaba (Red Sea). Journal of Plankton Research, 30(6):655-672, doi: 10.1093/plankt/fbn029
    [72] Shannon C E, Weaver W. 1963. The Mathematical Theory of Communication. Urbana:University of Illinois Press, 132
    [73] Simpson E H. 1949. Measurement of diversity. Nature, 163(4148):688, doi: 10.1038/163688a0
    [74] Sommer U, Berninger U G, Böttger-Schnack R, et al. 2002. Grazing during early spring in the Gulf of Aqaba and the northern Red Sea. Marine Ecology Progress Series, 239:251-261, doi: 10.3354/meps239251
    [75] Weikert H. 1982. The vertical distribution of zooplankton in relation to habitat zones in the area of the Atlantis II Deep, central Red Sea. Marine Ecology Progress Series, 8:129-143, doi: 10.3354/meps008129
    [76] Weikert H. 1987. Plankton and the pelagic environment. In:Edwards A, Head S M, eds. Key Environmental Series:Red Sea. Oxford:Pergamon Press, 90–1111
    [77] Zaitsev Y P. 1971. Marine neustonology (Morskaya neistonologiya). National Marine Fisheries Service, NOAA, and NSF. Springfield:U.S. Department of Commerce, National Technical Information Service; Jerusalem:Israel Program for Scientific Translations, 207
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Article Metrics

Article views(129) PDF downloads(76) Cited by()

Related
Proportional views

Zooneuston and zooplankton abundance and diversity in relation to spatial and nycthemeral variations in the Gulf of Aqaba and northern Red Sea

doi: 10.1007/s13131-019-1427-1

Abstract: Zooplankton and zooneuston observations were made at seven stations (four from the Gulf of Aqaba and three from the northern Red Sea), during September and October 2016. The main objective of this study was to assess the variability of nycthemeral fauna in relation to the sampling methods using two different types of nets namely, WP2 net and Neuston net along the two study sites, i.e., the Gulf of Aqaba and the northern Red Sea. Zooplankton was sampled vertically using a standard WP2 net from a depth of 200 m to the surface, whereas zooneuston was made using a standard Neuston net from a depth of 0-10 cm of the water surface. Total zooplankton density was maximum during night time ((617.83 ±201.84) ind./m3) at the Gulf of Aqaba and total zooneuston was maximum during night at the northern Red Sea ((60.94±29.48) ind./m3), respectively. The most abundant taxa were Copepoda, Gastropoda, Bivalva, Chaetognatha, Tunicata and Ostracoda. The abundance was almost 50% higher at night time at both the Gulf of Aqaba and the northern Red Sea. Overall, 30 taxa covering 10 phyla and 27 taxa covering 8 phyla were recorded in the Gulf of Aqaba and the northern Red Sea.

Mantha Gopikrishna, Al-Sofyani Abdulmohsin A., Ali M Al-Aidaroos, Crosby Michael P. Zooneuston and zooplankton abundance and diversity in relation to spatial and nycthemeral variations in the Gulf of Aqaba and northern Red Sea[J]. Acta Oceanologica Sinica, 2019, 38(12): 59-72. doi: 10.1007/s13131-019-1427-1
Citation: Mantha Gopikrishna, Al-Sofyani Abdulmohsin A., Ali M Al-Aidaroos, Crosby Michael P. Zooneuston and zooplankton abundance and diversity in relation to spatial and nycthemeral variations in the Gulf of Aqaba and northern Red Sea[J]. Acta Oceanologica Sinica, 2019, 38(12): 59-72. doi: 10.1007/s13131-019-1427-1
Reference (77)

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return