Turn off MathJax
Article Contents
Long Lin, Hailun He, Yong Cao, Tao Li, Yilin Liu, Mingfeng Wang. Oceanic vertical mixing of the lower halocline water in the Chukchi Borderland and Mendeleyev Ridge[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1825-z
Citation: Long Lin, Hailun He, Yong Cao, Tao Li, Yilin Liu, Mingfeng Wang. Oceanic vertical mixing of the lower halocline water in the Chukchi Borderland and Mendeleyev Ridge[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1825-z

Oceanic vertical mixing of the lower halocline water in the Chukchi Borderland and Mendeleyev Ridge

doi: 10.1007/s13131-021-1825-z
Funds:  The National Natural Science Foundation of China under contract NO. 42006037, the Chinese Polar Environmental Comprehensive Investigation & Assessment Programs, Grant from the Scientific Research Fund of the Second Institute of Oceanography, MNR under contract NO. JB904, and the National Key R&D Program of China under contract NO. 2019YFC1509102.
More Information
  • Corresponding author: E-mail: hehailun@sio.org.cn
  • Received Date: 2021-02-02
  • Accepted Date: 2021-03-09
  • Available Online: 2021-07-02
  • Oceanic vertical mixing of the lower halocline water (LHW) in the Chukchi Borderland and Mendeleyev Ridge was studied based on in situ hydrographic and turbulent observations. The depth-averaged turbulent dissipation rate of LHW demonstrates a clear topographic dependence, with a mean value of 1.2×10–9 W/kg in the southwest of Canada Basin, 1.5×10–9 W/kg in the Mendeleyev Abyssal Plain, 2.4×10–9 W/kg on the Mendeleyev Ridge, and 2.7×10–9 W/kg on the Chukchi Cap. Correspondingly, the mean depth-averaged vertical heat flux of the LHW is 0.21 W/m2 in the southwest Canada Basin, 0.30 W/m2 in the Mendeleyev Abyssal Plain, 0.39 W/m2 on the Mendeleyev Ridge, and 0.46 W/m2 on the Chukchi Cap. However, in the presence of Pacific Winter Water, the upward heat released from Atlantic Water through the lower halocline can hardly contribute to the surface ocean. Further, the underlying mechanisms of diapycnal mixing in LHW—double diffusion and shear instability—was investigated. The mixing in LHW where double diffusion were observed is always relatively weaker, with corresponding dissipation rate ranging from 1.01×10–9 W/kg to 1.57×10–9 W/kg. The results also show a strong correlation between the depth-average dissipation rate and strain variance in the LHW, which indicates a close physical linkage between the turbulent mixing and internal wave activities. In addition, both surface wind forcing and semidiurnal tides significantly contribute to the turbulent mixing in the LHW.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (84) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return