Home > 2017, 36(7) > Sea surface wind speed retrieval under rain with the HY-2 microwave radiometer

Citation: Jin WANG, Jie ZHANG, Jing WANG. Sea surface wind speed retrieval under rain with the HY-2 microwave radiometer. ACTA OCEANOLOGICA SINICA, 2017, 36(7): 32-38. doi: 10.1007/s13131-017-1080-5

2017, 36(7): 32-38. doi: 10.1007/s13131-017-1080-5

Sea surface wind speed retrieval under rain with the HY-2 microwave radiometer

1.  College of Physics, Qingdao University, Qingdao 266071, China
2.  The First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
3.  College of Information Science and Engineering, Ocean University of China, Qingdao 266100, China

Corresponding author: Jin WANG, wangjin@qdu.edu.cn

Received Date: 2016-03-30
Web Publishing Date: 2017-07-01

Fund Project: The National Science Foundation for Young Scientists of China under contract 41306183; the National High Technology Research and Development Program (863 Program) of China under contract Nos 2013AA09A505 and 2013AA122803.

As rain drops change the radiation and scattering characteristic of the oceans and the atmosphere, the wind speed measuring by spaceborne remote sensors under rainy conditions remains challenging for years. On the basis of a microwave radiometer (RM) loaded on HY-2 satellite, the sensitivity of some brightness temperature (TB) channels to a rain rate and the wind speed are analyzed. Consequently, two TB combinations which show minor sensitivity to rain are obtained. Meanwhile, the sensitivity of the TB combination to the wind speed is even better to the original TB channel. On the basis of these TB combinations, a wind speed retrieval algorithm is developed and compared with WindSat all-weather wind speed product, HY-2 RM original wind speed product and buoy in situ data. The wind speed retrieval accuracy is better than 2 m/s for rainy conditions, which is evidently superior to HY-2 RM original product. The applicability of this new algorithm is testified for the wind speed measuring in rainy weather with HY-2 RM.

Key words: HY-2 microwave radiometer , rain , wind speed , retrieval algorithm , brightness temperature

[1]

Adams I S, Hennon C C, Jones W L, et al. 2006. Evaluation of hurricane ocean vector winds from WindSat. IEEE Trans Geosci Remote Sens, 44(3): 656–667

[2]

Amarin R A, Jones W L, El-Nimri S F, et al. 2012. Hurricane wind speed measurements in rainy c onditions using the airborne hurricane imaging radiometer (HIRAD). IEEE Trans Geosci Remote Sens, 50(1): 180–192

[3]

Hiburn K A, Meissner T, Wentz F J, et al. 2016. Ocean vector winds from WindSat two-look polarimetric radiances. IEEE Trans Geosci Remote Sens, 54(2): 918–931

[4]

Huang Xiaoqi, Zhu Jianhua, Lin Mingsen, et al. 2014. A preliminary assessment of the sea surface wind speed production of HY-2 scanning microwave radiometer. Acta Oceanologica Sinica, 33(1): 114–119

[5]

Jiang Xingwei, Lin Mingsen, Liu Jianqiang, et al. 2012. The HY-2 satellite and its preliminary assessment. Int J Digit Earth, 5(3): 266–281

[6]

Jiang Xingwei, Lin Mingsen, Song Qingtao. 2013. Active and passive microwave remote sensing technology of the HY-2A ocean satellite mission. Eng Sci (in Chinese), 15(7): 4–11

[7]

Jones W L, Swift C T, Black P G, et al. 1981. Airborne microwave remote-sensing measurements of Hurricane Allen. Science, 214(4518): 274–280

[8]

Klein L, Swift C. 1977. An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans Antennas Propag, 25(1): 104–111

[9]

Martin S. 2004. An Introduction to Ocean Remote Sensing. Cambridge: Cambridge University Press, 237–238

[10]

Meissner T, Wentz F J. 2009. Wind-vector retrievals under rain with passive satellite microwave radiometers. IEEE Trans Geosci Remote Sens, 47(9): 3065–3083

[11]

Meissner T, Wentz F J. 2012. The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. IEEE Trans Geosci Remote Sens, 50(8): 3004–3026

[12]

Reul N, Tenerelli J, Chapron B, et al. 2012. SMOS satellite L-band radiometer: a new capability for ocean surface remote sensing in hurricanes. J Geophys Res, 117(C2): doi: 10.1029/2011JC007474

[13]

Ulaby F, Long D G. 2014. Microwave Radar and Radiometric Remote Sensing. Michigan, US: The University of Michigan Press, 896–897

[14]

Wang Zhenzhan, Bao Jinghua, Li Yun, et al. 2014. Study on retrieval algorithm of ocean parameters for the HY-2 scanning microwave radiometer. Eng Sci (in Chinese), 16(6): 70–82

[15]

Wang Jin, Zhang Jie, Fan Chenqing, et al. 2015. A new algorithm for sea-surface wind-speed retrieval based on the L-band radiometer onboard Aquarius. Chin J Oceanol Limnol, 33(5): 1115–1123

[16]

Wang He, Zhu Jianhua, Lin Mingsen, et al. 2013. First six months quality assessment of HY-2A SCAT wind products using in situ measurements. Acta Oceanologica Sinica, 32(11): 27–33

[17]

Weissman D E, Stiles B W, Hristova-veleva S M, et al. 2012. Challenges to satellite sensors of ocean winds: addressing precipitation effects. J Atmos Oceanic Technol, 29(3): 356–374

[18]

Wentz F J. 1983. A model function for ocean microwave brightness temperatures. J Geophys Res, 88(C3): 1892–1908

[19]

Wentz F J. 1997. A well-calibrated ocean algorithm for special sensor microwave/imager. J Geophys Res, 102(C4): 8703–8718

[20]

Wentz F J, Spencer R W. 1998. SSM/I rain retrievals within a unified all-weather ocean algorithm. J Atmos Sci, 55(9): 1613–1627

[21]

Zabolotskikh E, Mitnik L, Reul N, et al. 2015. New possibilities for geophysical parameter retrievals opened by GCOM-W1 AMSR2. IEEE J Sel Top Appl Earth Obs Remote Sens, 8(9): 4248–4261

[22]

Zhou Wu, Lin Mingsen, Li Yanmin, et al. 2013. Study of cold sky calibration and geophysical parameters retrieval for HY-2A satellite scanning microwave radiometer. Eng Sci (in Chinese), 15(7): 75–80

[1]

Bo LIN, Weizeng SHAO, Xiaofeng LI, Huan LI, Xiaoqing DU, Qiyan JI, Lina CAI. Development and validation of an ocean wave retrieval algorithm for VV-polarization Sentinel-1 SAR data. ACTA OCEANOLOGICA SINICA, 2017, 36(7): 95-101. doi: 10.1007/s13131-017-1089-9

[2]

Miaofen HUANG, Xufeng XING, Qingjun SONG, Yang LIU, Wentong DONG. A new algorithm of retrieving a petroleum substances absorption coefficient in sea water based on a remote sensing image. ACTA OCEANOLOGICA SINICA, 2016, 35(11): 97-104. doi: 10.1007/s13131-016-0952-4

[3]

Yao XU, Fan BI, Jinbao SONG, Hailun HE. The temporal and spatial variations in the Pacific wind and wave fields for the period 2002–2011. ACTA OCEANOLOGICA SINICA, 2017, 36(3): 26-36. doi: 10.1007/s13131-017-1039-6

[4]

Hongli MIAO, Yujie JING, Yongjun JIA, Mingsen LIN, Guoshou ZHANG, Guizhong WANG. Nonparametric estimations of the sea state bias for a radar altimeter. ACTA OCEANOLOGICA SINICA, 2017, 36(9): 108-113. doi: 10.1007/s13131-017-1116-x

[5]

Xuetong XIE, Ya WEN, Zhou HUANG. An advanced wind vector retrieval algorithm for the rotating fan-beam scatterometer. ACTA OCEANOLOGICA SINICA, 2017, 36(5): 83-89. doi: 10.1007/s13131-017-1062-7

[6]

Juhong ZOU, Mingsen LIN, Bin ZOU, Maohua GUO, Yi ZHANG. A routine operational backscattering coefficient regrouping algorithm for a HY-2A scatterometer. ACTA OCEANOLOGICA SINICA, 2018, 37(3): 111-116. doi: 10.1007/s13131-018-1204-6

[7]

Weifu SUN, Jin WANG, Jie ZHANG, Yi MA, Junmin MENG, Lei YANG, Junwei MIAO. A new global gridded sea surface temperature product constructed from infrared and microwave radiometer data using the optimum interpolation method. ACTA OCEANOLOGICA SINICA, 2018, 37(9): 41-49. doi: 10.1007/s13131-018-1206-4

[8]

Lijian SHI, Mingming LI, Chaofang ZHAO, Zhixiong WANG, Yingni SHI, Juhong ZOU, Tao ZENG. Sea ice extent retrieval with HY-2A scatterometer data and its assessment. ACTA OCEANOLOGICA SINICA, 2017, 36(8): 76-83. doi: 10.1007/s13131-017-1022-2

[9]

Mingsen LIN, Xiaomin YE, Xinzhe YUAN. The first quantitative joint observation of typhoon by Chinese GF-3 SAR and HY-2A microwave scatterometer. ACTA OCEANOLOGICA SINICA, 2017, 36(11): 1-3. doi: 10.1007/s13131-017-1133-9

[10]

Yexin SHENG, Weizeng SHAO, Shuai ZHU, Jian SUN, Xinzhe YUAN, Shuiqing LI, Jian SHI, Juncheng ZUO. Validation of significant wave height retrieval from co-polarization Chinese Gaofen-3 SAR imagery using an improved algorithm. ACTA OCEANOLOGICA SINICA, 2018, 37(6): 1-10. doi: 10.1007/s13131-018-1217-1

[11]

Yingying DING, Juncheng ZUO, Weizeng SHAO, Jian SHI, Xinzhe YUAN, Jian SUN, Jiachen HU, Xiaofeng LI. Wave parameters retrieval for dual-polarization C-band synthetic aperture radar using a theoretical-based algorithm under cyclonic conditions. ACTA OCEANOLOGICA SINICA, 2019, 38(5): 21-31. doi: 10.1007/s13131-019-1438-y

[12]

Ke Qu, Fengqin Zhu, Wenhua Song. A novel method for internal wave monitoring based on expansion of the sound speed profile. ACTA OCEANOLOGICA SINICA, 2019, 38(4): 183-189. doi: 10.1007/s13131-019-1422-6

[13]

Dezhi NING, Jun DU, Wei BAI, Chongwei ZHANG, Bin TENG. Numerical modelling of nonlinear extreme waves in presence of wind. ACTA OCEANOLOGICA SINICA, 2018, 37(9): 90-98. doi: 10.1007/s13131-018-1268-3

[14]

Chenguang Zhang, Chunyan Li. Effects of hurricane forward speed and approach angle on storm surges: an idealized numerical experiment. ACTA OCEANOLOGICA SINICA, 2019, 38(7): 48-56. doi: 10.1007/s13131-018-1081-z

[15]

Ting ZHANG, Jinbao SONG, Shuang LI, Liangui YANG. The effects of wind-driven waves and ocean spray on the drag coefficient and near-surface wind profiles over the ocean. ACTA OCEANOLOGICA SINICA, 2016, 35(11): 79-85. doi: 10.1007/s13131-016-0950-6

[16]

Chongwei ZHENG, Chongyin LI, Chengzhi GAO, Mingyang LIU. A seasonal grade division of the global offshore wind energy resource. ACTA OCEANOLOGICA SINICA, 2017, 36(3): 109-114. doi: 10.1007/s13131-017-1043-x

[17]

Yi Yu, Hao-Ran Zhang, Jiangbo Jin, Yuntao Wang. Trends of sea surface temperature and sea surface temperature fronts in the South China Sea during 2003–2017. ACTA OCEANOLOGICA SINICA, 2019, 38(4): 106-115. doi: 10.1007/s13131-019-1416-4

[18]

Maofei JIANG, Ke XU, Yalong LIU, Jin ZHAO, Lei WANG. Assessment of reprocessed sea surface height measurements derived from HY-2A radar altimeter and its application to the observation of 2015–2016 El Niño. ACTA OCEANOLOGICA SINICA, 2018, 37(1): 115-129. doi: 10.1007/s13131-018-1162-z

[19]

Cuijuan SUI, Zhanhai ZHANG, Lejiang YU, Yi LI, Mirong SONG. Investigation of Arctic air temperature extremes at north of 60°N in winter. ACTA OCEANOLOGICA SINICA, 2017, 36(11): 51-60. doi: 10.1007/s13131-017-1137-5

[20]

Dongjie BI, Daojun ZHANG, Shikui ZHAI, Xinyu LIU, Chun XIU, Xiaofeng LIU, Aibin ZHANG. The relative changes of a sea surface temperature in the South China Sea since the Pliocene. ACTA OCEANOLOGICA SINICA, 2019, 38(3): 78-92. doi: 10.1007/s13131-019-1401-y

Metrics
  • PDF Downloads()
  • Abstract Views()
  • HTML Views()
Catalog

Figures And Tables

Sea surface wind speed retrieval under rain with the HY-2 microwave radiometer

Jin WANG, Jie ZHANG, Jing WANG