Petrogenesis and tectonic implication of lavas from the Yap Trench, western Pacific

Ling Chen Limei Tang Jichao Yang Xiaohu Li Wei Wang Fengyou Chu Jie Zhang

Ling Chen, Limei Tang, Jichao Yang, Xiaohu Li, Wei Wang, Fengyou Chu, Jie Zhang. Petrogenesis and tectonic implication of lavas from the Yap Trench, western Pacific[J]. Acta Oceanologica Sinica, 2021, 40(11): 147-161. doi: 10.1007/s13131-021-0185-y
Citation: Ling Chen, Limei Tang, Jichao Yang, Xiaohu Li, Wei Wang, Fengyou Chu, Jie Zhang. Petrogenesis and tectonic implication of lavas from the Yap Trench, western Pacific[J]. Acta Oceanologica Sinica, 2021, 40(11): 147-161. doi: 10.1007/s13131-021-0185-y

doi: 10.1007/s13131-021-0185-y

Petrogenesis and tectonic implication of lavas from the Yap Trench, western Pacific

Funds: The National Key R&D Program of China under contract No. 2017YFC1405502; the Scientific Research Fund of the Second Institute of Oceanography, Ministry of Natural Resources under contract Nos QNYC1901 and JG2002; the National Natural Science Foundation of China under contract No. 41976072; the “13th Five-Year Plan” for Resources and Environment Projects of the China Ocean Mineral R&D Association (COMRA) under contract No. DY135-G2-1-01.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Elevation and tectonic features of the study area (a) and detailed bathymetry around the sampling stations (b). Dive 109 in b includes 3 stations, which overlapped in map due to close distance. Refer to Table 1 for detailed longitude and latitude information.

    A1.  Image of the bottom scene at the sampling site of the Chinese manned submersible Jiaolong on Dive 112 during the DY125-37 cruise.

    Figure  2.  Images of the Yap Trench lava. a and b. Hand specimens of Dive 112-S03-1 and Dive 113-S02-1 samples; and c and d. microimages of Dive 109-S02-1 and Dive 112-S03-1 samples in cross-polarized light.

    Figure  3.  SiO2 vs. Na2O + K2O diagram of the studied Yap Trench lava samples (after Le Bas et al., 1986). Lavas from the southeast Mariana forearc rift (SEMFR) (Ribeiro et al., 2013b) and typical forearc basalts (FAB) (Reagan et al., 2010) are shown for comparison.

    Figure  4.  MgO vs. Na2O (a), MgO vs. CaO (b), SiO2 vs. FeOT/MgO (c), and FeOT/MgO vs. TiO2 (d) diagrams of the studied lava. The solid line and dashed lines in c distinguish the tholeiite and calc-alkaline suites (Miyashiro, 1974) and high-, medium-, and low-Fe suites (Arculus, 2003), respectively. Mid-ocean ridge basalt (MORB) samples dredged from the Caroline Plate are shown for comparison (Fornari et al., 1979; Zhang et al., 2020). The fields indicate lavas from the Mariana Arc (MA) (Stern et al., 2006; Tamura et al., 2014; Ikeda et al., 2016), Mariana Trough (MT) (Sinton and Fryer, 1987; Hawkins et al., 1990; Stern et al., 1990; Gribble et al., 1996, 1998; Ikeda et al., 2016), southeast Mariana forearc rift (SEMFR) (Ribeiro et al., 2013b), and typical forearc basalts (FAB) (Reagan et al., 2010). Other data sources are shown in the legend.

    Figure  5.  Ti vs. V diagram of the studied Yap Trench lava. Lines of constant Ti/V distinguish arc lava (Ti/V < 20), backarc basin basalt (BABB), and mid-ocean ridge basalt (MORB) (20 ≤ Ti/V < 50), and ocean island basalt (OIB) (50 ≤ Ti/V < 100) (Shervais, 1982). Data sources are the same as in Fig. 3.

    Figure  6.  Primitive mantle (PM)-normalized rare earth element (REE) concentrations of the studied lava. Lava data from the Mariana Arc (Turner and Langmuir, 2015; Ikeda et al., 2016) and Mariana Trough (Gale et al., 2013; Ikeda et al., 2016) are shown. Field of the whole-rock data of the southeast southeast SEMFR lava (SE SEMFR lave WR) is obtained from Ribeiro et al. (2013b). Field of the N-MORB-type back-arc basin basalts in the Parece Vela Basin is obtained from Hickey-Vargas (1998). Field of the MORB-type basalts from the Caroline Plate is obtained from Zhang et al. (2020). Data for PM, N-MORB, and E-MORB are obtained from Sun and McDonough (1989). Other data sources are shown in the legend. SEMFR: southeast Mariana forearc rift, MORB: mid-ocean ridge basalt.

    Figure  7.  N-MORB-normalized trace element diagram of the studied Yap Trench lavas. Fields of the Mariana Arc (Turner and Langmuir, 2015; Ikeda et al., 2016) and Mariana Trough (Gale et al., 2013; Ikeda et al., 2016) are shown for comparison. Field of the whole-rock data of the southeast SEMFR lava (SE SEMFR lava WR) is obtained from Ribeiro et al. (2013b). Field of the N-MORB-type basalts from the Caroline Plate is obtained from Zhang et al. (2020). Data of the N-MORB-type back-arc basin basalts in the Parece Vela Basin are obtained from Hickey-Vargas (1998). N-MORB data are obtained from Sun and McDonough (1989). SEMFR: southeast Mariana forearc rift, MORB: mid-ocean ridge basalt.

    Figure  8.  Th/Nb vs. Ba/Nb diagram of the studied lava. Fields show lavas from the Mariana Arc (MA) (Stern et al., 2006; Tamura et al., 2014; Ikeda et al., 2016), Mariana Trough (MT) (Hawkins et al., 1990; Stern et al., 1990; Gribble et al., 1998; Pearce et al., 2005; Ikeda et al., 2016), southeast Mariana forearc rift (SEMFR) (Ribeiro et al., 2013b), and typical forearc basalts (FAB) (Reagan et al., 2010). Other data sources are shown in the legend. MORB: mid-ocean ridge basalt.

    Figure  9.  Nb/Yb vs. Ba/Yb (a) and Nb/Yb vs. Th/Yb (b) diagrams of the studied lava. Fields show lavas from the Mariana Arc (MA) (Stern et al., 2006; Tamura et al., 2014; Ikeda et al., 2016), Mariana Trough (MT) (Hawkins et al., 1990; Stern et al., 1990; Gribble et al., 1998; Pearce et al., 2005; Ikeda et al., 2016), southeast Mariana forearc rift (SEMFR) (Ribeiro et al., 2013b), and typical forearc basalt (FAB) (Reagan et al., 2010). Other data sources are shown in the legend.

    Figure  10.  Schematic showing overthrust of the Parece Vela Basin (PVB) crust onto the Yap Arc and forearc area due to the collision of the Caroline Ridge with the trench. Gray blocks indicate back-arc crustal rocks presented in the deep trench due to the overthrust of the Parece Vela Basin crust and landslides of the landward trench slope, and pink blocks indicate the volcanic lava exposed on the seafloor through faulting in the horst and graben (red arrows) on the subduction plate. Blue arrow indicates the subduction direction.

    Table  1.   Whole-rock major element and trace element concentrations in lavas from the Yap Trench

    Sample ID GBW07316AGV-2
    Dive
    109-S02-1
    Dive
    109-S03-1
    Dive
    109-S05-1
    Dive
    109-S05-2
    Dive
    112-S03-1
    Dive
    112-S08-1
    Dive
    113-S02-1
    Dive stationDive 109-S02Dive 109-S03Dive 109-S05Dive 112-S03Dive 112-S08Dive 113-S02
    East longitude/(°)138.402 700138.402 000138.401 900138.496 000138.479 000138.655 000
    North latitude/(°)9.899 3179.899 5709.900 1499.865 5509.868 8309.865 850
    Major elementSiO2/%45.9449.9154.5052.0850.5548.7349.5031.21
    TiO2/%1.622.081.771.711.831.930.950.37
    Al2O3/%11.7313.2611.8213.7513.2912.9717.757.89
    TFe2O3/%12.2112.8611.3911.5112.3014.189.243.70
    MnO/%0.190.200.180.160.200.320.120.41
    MgO/%14.126.256.734.765.926.774.592.07
    CaO/%10.8610.439.1011.418.058.3712.4322.35
    Na2O/%1.523.162.542.014.062.753.123.91
    K2O/%0.140.340.390.200.810.290.241.54
    P2O5/%0.010.210.180.180.090.140.130.32
    LOI/%1.170.630.901.292.981.981.1125.80
    Sum/%99.5199.3299.5099.04100.0798.4499.1999.56
    Trace elementLi/10−63.14.64.74.122.329.710.910.6
    Ti/10−69 89112 64810 69110 37311 05911 1425 7446 225
    V/10−6327392340354464452236118
    Rb/10−60.4813.3484.8862.35511.73715.966.70167.470
    Sr/10−697387358492143112168659
    Y/10−618.531.927.131.326.731.824.119.9
    Zr/10−685.2111.099.5101.6100.999.668.2231.3
    Nb/10−613.5012.0511.4014.005.004.922.5714.31
    Cs/10−60.0060.070.1230.090.1551.2180.3981.082
    Ba/10−620.6100.4122.365.257.718.115.71 115.3
    La/10−610.2310.911.0710.083.945.174.0938.05
    Ce/10−622.725.924.324.910.012.98.569.1
    Pr/10−62.903.523.453.531.512.101.438.12
    Nd/10−613.2217.2616.7517.238.0510.457.4430.22
    Sm/10−63.4994.8274.5464.8462.8943.6772.4665.639
    Eu/10−61.3081.6721.5141.6361.241.3840.9981.524
    Gd/10−63.7265.8015.1935.663.8354.8443.3594.496
    Tb/10−60.5820.9390.8460.9220.7070.8880.5880.615
    Dy/10−63.3835.7965.0055.6244.5805.6723.8003.500
    Ho/10−60.6821.1851.0211.1360.9681.1980.8260.655
    Er/10−61.8623.3582.8293.2112.9033.5282.4801.840
    Tm/10−60.2650.4540.3970.4720.4100.5150.3620.259
    Yb/10−61.7433.0152.5562.9452.8123.4042.4081.653
    Lu/10−60.2470.4360.3590.420.3940.4910.3470.254
    Hf/10−62.2952.9362.6462.6182.7442.7571.6875.243
    Ta/10−61.1081.1551.1611.8910.4810.4550.2520.853
    Pb/10−610.308.243.634.570.770.940.7713.13
    Th/10−60.9690.9280.9370.8060.2550.3220.2346.232
    U/10−60.1700.3770.4140.3650.5940.9480.1681.789
    Note: LOI means loss on ignition. Measured major element contents for reference materials GBW07316 and trace element contents for reference materials AGV-2 are also presented.
    下载: 导出CSV
  • [1] Arculus R J. 2003. Use and abuse of the terms calcalkaline and calcalkalic. Journal of Petrology, 44(5): 929–935. doi: 10.1093/petrology/44.5.929
    [2] Beccaluva L, Macciotta G, Savelli C, et al. 1980. Geochemistry and K/Ar ages of volcanics dredged in the Philippine Sea (Mariana, Yap, and Palau trenches and Parece Vela Basin). In: Hayes D E, ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington, DC, USA: American Geophysical Union, 247–268
    [3] Beccaluva L, Serri G, Dostal J. 1986. Geochemistry of volcanic rocks from the Mariana, Yap and Palau trenches bearing on the tectono-magmatic evolution of the Mariana trench-arc-backarc system. Developments in Geotectonics, 21: 481–508
    [4] Bracey D R. 1975. Reconnaissance geophysical survey of the Caroline Basin. Geological Society of America Bulletin, 86(6): 775–784. doi: 10.1130/0016-7606(1975)86<775:RGSOTC>2.0.CO;2
    [5] Chen Ling, Tang Limei, Li Xiaohu, et al. 2019a. Geochemistry of peridotites from the Yap Trench, Western Pacific: implications for subduction zone mantle evolution. International Geology Review, 61(9): 1037–1051. doi: 10.1080/00206814.2018.1484305
    [6] Chen Ling, Tang Limei, Li Xiaohu, et al. 2019b. Ancient melt depletion and metasomatic history of the subduction zone mantle: osmium isotope evidence of peridotites from the Yap Trench, Western Pacific. Minerals, 9(12): 717. doi: 10.3390/min9120717
    [7] Crawford A J, Beccaluva L, Serri G, et al. 1986. Petrology, geochemistry and tectonic implications of volcanics dredged from the intersection of the Yap and Mariana trenches. Earth and Planetary Science Letters, 80(3–4): 265–280
    [8] Crawford A J, Falloon T J, Green D H. 1989. Classification, petrogenesis and tectonic setting of boninites. In: Crawford A J, ed. Boninites and related Rocks, Unwin and Hyman. London: UTAS, 1–49
    [9] Dilek Y, Furnes H, Shallo M. 2008. Geochemistry of the Jurassic Mirdita Ophiolite (Albania) and the MORB to SSZ evolution of a marginal basin oceanic crust. Lithos, 100(1–4): 174–209
    [10] Dong Dongdong, Zhang Zhengyi, Bai Yongliang, et al. 2018. Topographic and sedimentary features in the Yap subduction zone and their implications for the Caroline Ridge subduction. Tectonophysics, 722: 410–421. doi: 10.1016/j.tecto.2017.11.030
    [11] Elliott T, Plank T, Zindler A, et al. 1997. Element transport from slab to volcanic front at the Mariana arc. Journal of Geophysical Research: Solid Earth, 102(B7): 14991–15019. doi: 10.1029/97JB00788
    [12] Fornari D J, Weissel J K, Perfit M R, et al. 1979. Petrochemistry of the Sorol and Ayu Troughs: implications for crustal accretion at the northern and western boundaries of the Caroline Plate. Earth and Planetary Science Letters, 45(1): 1–15. doi: 10.1016/0012-821X(79)90102-X
    [13] Fujiwara T, Tamura C, Nishizawa A, et al. 2000. Morphology and tectonics of the Yap Trench. Marine Geophysical Researches, 21(1): 69–86
    [14] Gaina C, Müller D. 2007. Cenozoic tectonic and depth/age evolution of the Indonesian gateway and associated back-arc basins. Earth-Science Reviews, 83(3–4): 177–203
    [15] Gale A, Dalton C A, Langmuir C H, et al. 2013. The mean composition of ocean ridge basalts. Geochemistry, Geophysics, Geosystems, 14(3): 489–518. doi: 10.1029/2012GC004334
    [16] Gribble R F, Stern R J, Bloomer S H, et al. 1996. MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin. Geochimica et Cosmochimica Acta, 60(12): 2153–2166. doi: 10.1016/0016-7037(96)00078-6
    [17] Gribble R F, Stern R J, Newman S, et al. 1998. Chemical and isotopic composition of lavas from the northern Mariana Trough: Implications for magmagenesis in back-arc basins. Journal of Petrology, 39(1): 125–154. doi: 10.1093/petroj/39.1.125
    [18] Hawkesworth C J, Turner S P, McDermott F, et al. 1997. U-Th isotopes in arc magmas: implications for element transfer from the subducted crust. Science, 276(5312): 551–555. doi: 10.1126/science.276.5312.551
    [19] Hawkins J, Batiza R. 1977. Metamorphic rocks of the Yap Arc-Trench system. Earth and Planetary Science Letters, 37(2): 216–229. doi: 10.1016/0012-821X(77)90166-2
    [20] Hawkins J W, Lonsdale P F, Macdougall J D, et al. 1990. Petrology of the axial ridge of the Mariana Trough backarc spreading center. Earth and Planetary Science Letters, 100(1–3): 226–250
    [21] Hegarty K A, Weissel J K. 1988. Complexities in the development of the Caroline Plate region, western equatorial Pacific. In: Nairn A E M, Stehli F G, Uyeda S, eds. The Ocean Basins and Margins. Boston: Springer, 277–301
    [22] Hickey-Vargas R. 1998. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: An assessment of local versus large-scale processes. Journal of Geophysical Research: Solid Earth, 103(B9): 20963–20979. doi: 10.1029/98JB02052
    [23] Hulme S M, Wheat C G, Fryer P, et al. 2010. Pore water chemistry of the Mariana serpentinite mud volcanoes: a window to the seismogenic zone. Geochemistry, Geophysics, Geosystems, 11(1): Q01X09
    [24] Ikeda Y, Nagao K, Ishii T, et al. 2016. Contributions of slab fluid and sediment melt components to magmatism in the Mariana Arc-Trough system: evidence from geochemical compositions and Sr, Nd, and noble gas isotope systematics. Island Arc, 25(4): 253–273. doi: 10.1111/iar.12150
    [25] Ishizuka O, Hickey-Vargas R, Arculus R J, et al. 2018. Age of Izu–Bonin–Mariana arc basement. Earth and Planetary Science Letters, 481: 80–90. doi: 10.1016/j.jpgl.2017.10.023
    [26] Ishizuka O, Kimura J I, Li Y B, et al. 2006. Early stages in the evolution of Izu–Bonin arc volcanism: new age, chemical, and isotopic constraints. Earth and Planetary Science Letters, 250(1–2): 385–401
    [27] Ishizuka O, Taylor R N, Yuasa M, et al. 2011. Making and breaking an island arc: a new perspective from the Oligocene Kyushu–Palau arc, Philippine Sea. Geochemistry, Geophysics, Geosystems, 12(5): Q05005
    [28] Keating B H, Mattey D P, Helsley C E, et al. 1984. Evidence for a hot spot origin of the Caroline Islands. Journal of Geophysical Research: Solid Earth, 89(B12): 9937–9948. doi: 10.1029/JB089iB12p09937
    [29] Kobayashi K. 2000. Horizontally-moving subducted slab may generate enigmatic features of the Palau and Yap Trench-Arcs. Proceedings of the Japan Academy, Series B, 76(9): 133–138. doi: 10.2183/pjab.76.133
    [30] Kobayashi K. 2004. Origin of the Palau and Yap Trench-Arc systems. Geophysical Journal International, 157(3): 1303–1315. doi: 10.1111/j.1365-246X.2003.02244.x
    [31] Le Bas M L, Le Maitre R W, Streckeisen A, et al. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology, 27(3): 745–750. doi: 10.1093/petrology/27.3.745
    [32] Lee S M. 2004. Deformation from the convergence of oceanic lithosphere into Yap Trench and its implications for early-stage subduction. Journal of Geodynamics, 37(1): 83–102. doi: 10.1016/j.jog.2003.10.003
    [33] Li Hongyan, Taylor R N, Prytulak J, et al. 2019. Radiogenic isotopes document the start of subduction in the Western Pacific. Earth and Planetary Science Letters, 518: 197–210. doi: 10.1016/j.jpgl.2019.04.041
    [34] Liu Feng, Cui Weicheng, Li Xiangyang. 2010. China’s first deep manned submersible, JIAOLONG. Science China Earth Sciences, 53(10): 1407–1410. doi: 10.1007/s11430-010-4100-2
    [35] Martinez F, Stern R J, Kelley K A, et al. 2018. Diffuse extension of the southern Mariana margin. Journal of Geophysical Research: Solid Earth, 123(1): 892–916. doi: 10.1002/2017JB014684
    [36] McCabe R, Uyeda S. 1983. Hypothetical model for the bending of the Mariana Arc. In: Hayes D E, ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington, DC, USA: American Geophysical Union, 281–293
    [37] Meijer A, Reagan M, Ellis H, et al. 1983. Chronology of volcanic events in the eastern Philippine Sea. In: Hayes D E, ed. The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands. Washington: American Geophysical Union, 349–359
    [38] Miyashiro A. 1974. Volcanic rock series in island arcs and active continental margins. American Journal of Science, 274(4): 321–355. doi: 10.2475/ajs.274.4.321
    [39] Ohara Y, Fujioka K, Ishizuka O, et al. 2002. Peridotites and volcanics from the Yap Arc system: implications for tectonics of the southern Philippine Sea Plate. Chemical Geology, 189(1–2): 35–53
    [40] Okino K, Kasuga S, Ohara Y. 1998. A new scenario of the Parece Vela Basin genesis. Marine Geophysical Researches, 20(1): 21–40. doi: 10.1023/A:1004377422118
    [41] Parkinson I J, Hawkesworth C J, Cohen A S. 1998. Ancient mantle in a modern arc: osmium isotopes in Izu-Bonin-Mariana forearc peridotites. Science, 281(5385): 2011–2013. doi: 10.1126/science.281.5385.2011
    [42] Pearce J A, Stern R J, Bloomer S H, et al. 2005. Geochemical mapping of the Mariana arc-basin system: Implications for the nature and distribution of subduction components. Geochemistry, Geophysics, Geosystems, 6(7): Q07006
    [43] Pearce J A, Van Der Laan S R, Arculus R J, et al. 1992. Boninite and harzburgite from Leg 125 (Bonin-Mariana forearc): a case study of magma genesis during the initial stages of subduction. In: Proceedings of the ocean drilling program scientific results. College Station, TX, USA: A&M University, 623–659
    [44] Reagan M K, Heaton D E, Schmitz M D, et al. 2019. Forearc ages reveal extensive short-lived and rapid seafloor spreading following subduction initiation. Earth and Planetary Science Letters, 506: 520–529. doi: 10.1016/j.jpgl.2018.11.020
    [45] Reagan M K, Ishizuka O, Stern R J, et al. 2010. Fore-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochemistry, Geophysics, Geosystems, 11(3): Q03X12
    [46] Reagan M K, McClelland W C, Girard G, et al. 2013. The geology of the southern Mariana fore-arc crust: Implications for the scale of Eocene volcanism in the western Pacific. Earth and Planetary Science Letters, 380: 41–51. doi: 10.1016/j.jpgl.2013.08.013
    [47] Ribeiro J M, Ishizuka O, Lee C T A, et al. 2020. Evolution and maturation of the nascent Mariana arc. Earth and Planetary Science Letters, 530: 115912. doi: 10.1016/j.jpgl.2019.115912
    [48] Ribeiro J M, Stern R J, Kelley K A, et al. 2013a. Nature and distribution of slab-derived fluids and mantle sources beneath the Southeast Mariana forearc rift. Geochemistry, Geophysics, Geosystems, 14(10): 4585–4607. doi: 10.1002/ggge.20244
    [49] Ribeiro J M, Stern R J, Martinez F, et al. 2013b. Geodynamic evolution of a forearc rift in the southernmost Mariana Arc. Island Arc, 22(4): 453–476. doi: 10.1111/iar.12039
    [50] Sato T, Kasahara J, Katao H, et al. 1997. Seismic observations at the Yap Islands and the northern Yap Trench. Tectonophysics, 271(3–4): 285–294
    [51] Sdrolias M, Roest W R, Müller R D. 2004. An expression of Philippine Sea plate rotation: the Parece vela and shikoku basins. Tectonophysics, 394(1–2): 69–86
    [52] Seno T, Stein S, Gripp A E. 1993. A model for the motion of the Philippine Sea plate consistent with NUVEL-1 and geological data. Journal of Geophysical Research: Solid Earth, 98(B10): 17941–17948. doi: 10.1029/93JB00782
    [53] Shervais J W. 1982. Ti-V plots and the petrogenesis of modern and ophiolitic lavas. Earth and Planetary Science Letters, 59(1): 101–118. doi: 10.1016/0012-821X(82)90120-0
    [54] Shervais J W, Reagan M, Haugen E, et al. 2019. Magmatic response to subduction initiation: Part 1. Fore-arc basalts of the Izu-Bonin arc from IODP Expedition 352. Geochemistry, Geophysics, Geosystems, 20(1): 314–338. doi: 10.1029/2018GC007731
    [55] Shiraki K. 1971. Metamorphic basement rocks of Yap Islands, western Pacific: possible oceanic crust beneath an island arc. Earth and Planetary Science Letters, 13(1): 167–174. doi: 10.1016/0012-821X(71)90120-8
    [56] Sinton J M, Fryer P. 1987. Mariana Trough lavas from 18°N: implications for the origin of back arc basin basalts. Journal of Geophysical Research: Solid Earth, 92(B12): 12782–12802. doi: 10.1029/JB092iB12p12782
    [57] Stern R J, Bloomer S H. 1992. Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. Geological Society of America Bulletin, 104(12): 1621–1636. doi: 10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2
    [58] Stern R J, Gerya T. 2018. Subduction initiation in nature and models: a review. Tectonophysics, 746: 173–198. doi: 10.1016/j.tecto.2017.10.014
    [59] Stern R J, Kohut E, Bloomer S H, et al. 2006. Subduction factory processes beneath the Guguan cross-chain, Mariana Arc: no role for sediments, are serpentinites important?. Contributions to Mineralogy and Petrology, 151(2): 202–221. doi: 10.1007/s00410-005-0055-2
    [60] Stern R J, Lin Pingnan, Morris J D, et al. 1990. Enriched back-arc basin basalts from the northern Mariana Trough: implications for the magmatic evolution of back-arc basins. Earth and Planetary Science Letters, 100(1–3): 210–225
    [61] Stern R J, Ren Minghua, Kelley K A, et al. 2014. Basaltic volcaniclastics from the Challenger Deep forearc segment, Mariana convergent margin: Implications for tectonics and magmatism of the southernmost Izu–Bonin–Mariana arc. Island Arc, 23(4): 368–382. doi: 10.1111/iar.12088
    [62] Sun S S, McDonough W F. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society Special Publication, 42(1): 313–345. doi: 10.1144/GSL.SP.1989.042.01.19
    [63] Tamura Y, Ishizuka O, Stern R J, et al. 2014. Mission immiscible: distinct subduction components generate two primary magmas at pagan volcano, Mariana arc. Journal of Petrology, 55(1): 63–101. doi: 10.1093/petrology/egt061
    [64] Turner S J, Langmuir C H. 2015. The global chemical systematics of arc front stratovolcanoes: Evaluating the role of crustal processes. Earth and Planetary Science Letters, 422: 182–193. doi: 10.1016/j.jpgl.2015.03.056
    [65] Van Keken P E, Kiefer B, Peacock S M. 2002. High-resolution models of subduction zones: Implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochemistry, Geophysics, Geosystems, 3(10): 1056
    [66] Wada I, Rychert C A, Wang Kelin. 2011. Sharp thermal transition in the forearc mantle wedge as a consequence of nonlinear mantle wedge flow. Geophysical Research Letters, 38(13): L13308
    [67] Whattam S A, Stern R J. 2011. The ‘subduction initiation rule’: a key for linking ophiolites, intra-oceanic forearcs, and subduction initiation. Contributions to Mineralogy and Petrology, 162(5): 1031–1045. doi: 10.1007/s00410-011-0638-z
    [68] Yamazaki T, Kikawa E, Murakami F, et al. 1994. Spreading mode of the West Caroline Basin deduced from magnetic vector anomalies. Journal of Geomagnetism and Geoelectricity, 46(6): 443–453. doi: 10.5636/jgg.46.443
    [69] Yang Yaomin, Wu Shiguo, Gao Jinwei, et al. 2018. Geology of the Yap Trench: new observations from a transect near 10°N from manned submersible Jiaolong. International Geology Review, 60(16): 1941–1953. doi: 10.1080/00206814.2017.1394226
    [70] Zhang Zhengyi, Dong Dongdong, Sun Weidong, et al. 2019. Subduction Erosion, crustal structure, and an evolutionary model of the northern yap subduction zone: new observations from the latest geophysical survey. Geochemistry, Geophysics, Geosystems, 20(1): 166–182. doi: 10.1029/2018GC007751
    [71] Zhang Ji, Zhang Guoliang. 2020. Geochemical and chronological evidence for collision of proto-Yap Arc/Caroline Plateau and rejuvenated plate subduction at Yap Trench. Lithos, 370−371: 105616. doi: 10.1016/j.lithos.2020.105616
    [72] Zhang Guoliang, Zhang Ji, Wang Shuai, et al. 2020. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau. Chemical Geology, 540: 119566. doi: 10.1016/j.chemgeo.2020.119566
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  1120
  • HTML全文浏览量:  410
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-26
  • 录用日期:  2021-04-26
  • 网络出版日期:  2021-08-18
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回