The construction of high precision geostrophic currents based on new gravity models of GOCE and satellite altimetry data

Wenyan Sui Junru Guo Jun Song Zhiliang Liu Meng Wang Xibin Li Yanzhao Fu Yongquan Li Yu Cai Linhui Wang Lingli Li Xiaofang Guo Wenting Zuo

Wenyan Sui, Junru Guo, Jun Song, Zhiliang Liu, Meng Wang, Xibin Li, Yanzhao Fu, Yongquan Li, Yu Cai, Linhui Wang, Lingli Li, Xiaofang Guo, Wenting Zuo. The construction of high precision geostrophic currents based on new gravity models of GOCE and satellite altimetry data[J]. Acta Oceanologica Sinica, 2021, 40(3): 142-152. doi: 10.1007/s13131-021-1707-4
Citation: Wenyan Sui, Junru Guo, Jun Song, Zhiliang Liu, Meng Wang, Xibin Li, Yanzhao Fu, Yongquan Li, Yu Cai, Linhui Wang, Lingli Li, Xiaofang Guo, Wenting Zuo. The construction of high precision geostrophic currents based on new gravity models of GOCE and satellite altimetry data[J]. Acta Oceanologica Sinica, 2021, 40(3): 142-152. doi: 10.1007/s13131-021-1707-4

doi: 10.1007/s13131-021-1707-4

The construction of high precision geostrophic currents based on new gravity models of GOCE and satellite altimetry data

Funds: The Open Fund of Key Laboratory of Marine Environmental Information Technology; the Open Foundation of Technology Innovation Center for Marine Information, Ministry of Natural Resources; the Liao Ning Revitalization Talents Program under contract No. XLYC1807161; the Dalian High-level Talents Innovation Support Plan under contract No. 2017RQ063; the National Natural Science Foundation of China under contract Nos 41206013 and 41430963; the Scientific Research Project of Liaoning Province Department of Education under contract No. QL201905; the Projects of Institute of Marine Industry Technology of Liaoning Universities; the grant from Key R&D Program of Liaoning Province under contract No. 2019JH2/10200015; the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0402; the Shandong Provincial Key Research and Development Program (SPKR&DP) under contract No. 2019JZZY020713.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Comparison of geoid heights from different GOCE gravity field models. a. DIR_R5-DIR_R6 model, b. DIR_R5-TIM_R5 model, c. DIR_R5-TIM_R6 model, d. DIR_R6-TIM_R5 model, e. DIR_R6-TIM_R6 model, and f. TIM_R5-TIM_R6 model.

    Figure  2.  Comparison of geoid heights from GRACE and GOCE gravity field models. a. ITSG-Grace2018-DIR_R5 model, b. ITSG-Grace2018-DIR_R6 model, c. ITSG-Grace2018-TIM_R5 model, and d. ITSG-Grace2018-TIM_R6 model.

    Figure  3.  The errors of CNES-CLS11 (a) and CNES-CLS15 (b).

    Figure  4.  Standard errors of drifters’ eastward velocities (a) and northward velocities (b).

    Figure  5.  Standard errors of the total geostrophic speed differences between gravity models and drifter in Kuroshio area (a) and Gulf Stream area (b).

    Figure  6.  The absolute errors of total geostrophic speeds calculated by different gravity field models. a. DIR_R5-drifter model, b. DIR_R6-drifter model, c. TIM_R5-drifter model, d. TIM_R6-drifter model, and e. ITSG-Grace2018-drifter model.

    Figure  7.  Mean dynamic topography (shadding) and corresponding geostrophic currents (black arrows) in the Kuroshio area. a. DIR_R5 model, b. DIR_R6 model, c. TIM_R5 model, d. TIM_R6 model, e. ITSG-Grace2018, and f. drifter.

    Figure  8.  Mean dynamic topography and corresponding geostrophic currents (velocities are displayed as black arrows) in the Gulf Stream area. a. DIR_R5 model, b. DIR_R6 model, c. TIM_R5 model, d. TIM_R6 model, e. ITSG- Grace2018 model, and f. drifter.

    Figure  9.  Comparison of total geostrophic speeds before and after Remove-restore technique in the Kuroshio current area (a. before remove-restore, b. after remove-restore, and c. drifter) and Gulf Stream area (d. before remove-restore, e. after remove-restore, and f. drifter).

    Table  1.   Statistics of the different geoid products

    Gravity modelMean geoid height/mRMS/mMinmum geoid height/mMaxmum geoid height/m
    DIR_R5-DIR_R60.0010.147–1.8781.853
    DIR_R5-TIM_R50.0060.246–2.6243.286
    DIR_R5-TIM_R60.0060.251–2.8122.580
    DIR_R6-TIM_R50.0050.209–2.3602.167
    DIR_R6-TIM_R60.0050.207–2.7852.461
    TIM_R5-TIM_R60.0000.284–2.4633.510
    ITSG-Grace2018-DIR_R5–0.014 0.349–3.4232.337
    ITSG-Grace2018-DIR_R6–0.013 0.323–3.5062.419
    ITSG-Grace2018-TIM_R5–0.008 0.373–3.3312.342
    ITSG-Grace2018-TIM_R6–0.007 0.383–3.6553.322
    下载: 导出CSV

    Table  2.   STD between the geostrophic currents based on GRACE/GOCE models and drifter results

    Gravity field modelUnfiltered velocityFiltered velocity
    STD (u)/(m·s–1)STD (v)/(m·s–1)STD (V)/(m·s–1)STD (u)/(m·s–1)STD (v)/(m·s–1)STD (V)/(m·s–1)
    DIR_R50.7717.83012.3750.0910.3670.333
    DIR_R60.7657.56712.1180.0910.3550.321
    TIM_R50.7867.70612.2510.0910.3590.325
    TIM_R60.7677.40411.9070.0910.3530.320
    ITSG-Grace20181.29311.702 16.1860.0970.3770.344
    下载: 导出CSV

    Table  3.   STD of geostrophic currents between the different MDT and drifter results

    MDT modelsSTD of geostrophic current/(m·s–1)
    STD (u)STD (v)STD (V)
    TIM_R6 before remove-restore0.0910.3530.320
    TIM_R6 after Remove-restore0.0770.2090.162
    MDT_CNES-CLS130.0800.2330.186
    下载: 导出CSV
  • [1] Albertella A, Savcenko R, Janjić T, et al. 2012. High resolution dynamic ocean topography in the southern ocean from GOCE. Geophysical Journal Interna-tional, 190(2): 922–930. doi: 10.1111/j.1365-246X.2012.05531.x
    [2] Andersen O, Knudsen P, Stenseng L. 2015. The DTU13 MSS (mean sea surface) and MDT (mean dynamic topography) from 20 years of Satellite Altimetry. In: Jin S, Barzaghi R, eds. IGFS 2014. International Association of Geodesy Symposia, Vol 144. Shanghai, China: Springer, Cham: 111–121
    [3] Bingham R J, Haines K, Hughes C W. 2008. Calculating the ocean’s mean dynamic topography from a mean sea surface and a geoid. Journal of Atmospheric and Oceanic Technology, 25(10): 1808–1822. doi: 10.1175/2008JTECHO568.1
    [4] Bingham R J, Haines K, Lea D. 2015. A comparison of GOCE and drifter-based estimates of the North Atlantic steady-state surface circulation. International Journal of Applied Earth Observation and Geoinformation, 35: 140–150. doi: 10.1016/j.jag.2014.03.012
    [5] Bingham R J, Knudsen P, Andersen O, et al. 2011. An initial estimate of the North Atlantic steadystate geostrophic circulation from GOCE. Geophysical Research Letters, 38(1): L01606. doi: 10.1029/2010GL045633
    [6] Brockmann J M, Schubert T, Mayer-Gürr T, et al. 2019. The Earth’s gravity field as seen by the GOCE satellite—An improved sixth release derived with the time-wise approach (GO_CONS _GCF_2_TIM_R6). GFZ Data Services
    [7] Brockmann J M, Zehentner N, Höck E, et al. 2014. EGM_TIM_RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission. Geophysical Research Letters, 41(22): 8089–8099. doi: 10.1002/2014GL061904
    [8] Bruinsma S L, Förste C, Abrikosov O, et al. 2013. The new ESA satellite-only gravity field model via the direct approach. Geophysical Research Letters, 40(14): 3607–3612. doi: 10.1002/grl.50716
    [9] Bruinsma S L, Förste C, Abrikosov O, et al. 2014. ESA’s satellite-only gravity field model via the direct approach based on all GOCE data. Geophysical Research Letters, 41(21): 7508–7514. doi: 10.1002/2014GL062045
    [10] Feng Guiping, Jin Shuanggen, Reales J M S. 2013. Antarctic circumpolar current from satellite gravimetric models ITG-GRACE2010, GOCE-TIM3 and satellite altimetry. Journal of Geodynamics, 72: 72–80. doi: 10.1016/j.jog.2013.08.005
    [11] Förste C, Abrykosov O, Bruinsma S, et al. 2019. ESA’s Release 6 GOCE gravity field model by means of the direct approach based on improved filtering of the reprocessed gradients of the entire mission (GO_CONS_GCF_2_DIR_R6). GFZ Data Services, https://doi.org/10.5880/ICGEM.2019.004
    [12] Förste C, Schmidt R, Stubenvoll R, et al. 2008. The GeoForschungs Zentrum Potsdam/Groupe de Recherche de Gèodésie Spatiale satellite-only and combined gravity field models: EIGEN-GL04S1 and EIGEN-GL04C. Journal of Geodesy, 82(6): 331–346. doi: 10.1007/s00190-007-0183-8
    [13] Haines K, Johannessen J A, Knudsen P, et al. 2011. An ocean modelling and assimilation guide to using GOCE geoid products. Ocean Science, 7(1): 151–164. doi: 10.5194/os-7-151-2011
    [14] Jin Shuanggen, Feng Guiping, Andersen O. 2014. Errors of mean dynamic topography and geostrophic current estimates in China’s marginal seas from GOCE and satellite altimetry. Journal of Atmos-pheric and Oceanic Technology, 31(11): 2544–2555. doi: 10.1175/JTECH-D-13-00243.1
    [15] Knudsen P, Andersen O, Maximenko N. 2019. A new ocean mean dynamic topography model, derived from a combination of gravity, altimetry and drifter velocity data. Advances in Space Research:
    [16] Knudsen P, Bingham R, Andersen O B, et al. 2011a. Enhanced mean dynamic topography and ocean circulation estimation using GOCE preliminary models. In: Proceedings of the 4th International GOCE User Workshop. Munich, Germany: European Space Agency
    [17] Knudsen P, Bingham R, Andersen O, et al. 2011b. A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. Journal of Geodesy, 85(11): 861–879. doi: 10.1007/s00190-011-0485-8
    [18] Kvas A, Mayer-Gürr T, Krauss S, et al. 2019. The satellite-only gravity field model GOCO06s. GFZ Data Services, https://doi. org/10.5880/ICGEM.2019.002
    [19] Laurindo L C, Mariano A J, Lumpkin R. 2017. An improved near-surface velocity climatology for the global ocean from drifter observations. Deep Sea Research Part I: Oceanographic Research Papers, 124: 73–92. doi: 10.1016/j.dsr.2017.04.009
    [20] Lumpkin R, Grodsky S A, Centurioni L, et al. 2013. Removing spurious low-frequency variability in drifter velocities. Journal of Atmospheric and Oceanic Technology, 30(2): 353–360. doi: 10.1175/JTECH-D-12-00139.1
    [21] Lumpkin R, Johnson G C. 2013. Global ocean surface velocities from drifters: Mean, variance, El Niño-Southern Oscillation response, and seasonal cycle. Journal of Geophysical Research: Oceans, 118(6): 2992–3006. doi: 10.1002/jgrc.20210
    [22] Mayer-Gürr T, Behzadpur S, Ellmer M, et al. 2018. ITSG-Grace2018-monthly, daily and static gravity field solutions from GRACE. GFZ Data Services
    [23] Pail R, Bruinsma S, Migliaccio F, et al. 2011. First GOCE gravity field models derived by three different approaches. Journal of Geodesy, 85(11): 819–843. doi: 10.1007/s00190-011-0467-x
    [24] Pail R, Goiginger H, Schuh W D, et al. 2010. Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophysical Research Letters, 37(20): L20314. doi: 10.1029/2010GL044906
    [25] Pavlis N K, Holmes S A, Kenyon S C, et al. 2008. An earth gravitational model to degree 2160: EGM2008. In: Proceedings of the 2008 General Assembly of the European Geosciences Union. Vienna, Austria: European Geosciences Union
    [26] Rio M H, Mulet S, Picot N. 2014. Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophysical Research Letters, 41(24): 8918–8925. doi: 10.1002/2014GL061773
    [27] Schaeffer P, Faugére Y, Legeais J F, et al. 2012. The CNES_CLS11 global mean sea surface computed from 16 years of satellite altimeter data. Marine Geodesy, 35(Sup1): 3–19. doi: 10.1080/01490419.2012.718231
    [28] Siegismund F. 2013. Assessment of optimally filtered recent geodetic mean dynamic topographies. Journal of Geophysical Research: Oceans, 118(1): 108–117. doi: 10.1029/2012JC008149
    [29] Sjöberg L E. 2005. A discussion on the approximations made in the practical implementation of the remove-compute-restore technique in regional geoid modelling. Journal of Geodesy, 78(11–12): 645–653
    [30] Tsoulis D, Patlakis K. 2013. A spectral assessment review of current satellite-only and combined Earth gravity models. Reviews of Geophysics, 51(2): 186–243. doi: 10.1002/rog.20012
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  509
  • HTML全文浏览量:  131
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-09
  • 录用日期:  2020-06-03
  • 网络出版日期:  2021-04-30
  • 刊出日期:  2021-04-30

目录

    /

    返回文章
    返回