Spreading rate dependence of morphological characteristics in global oceanic transform faults

Yiming Luo Jian Lin Fan Zhang Meng Wei

Yiming Luo, Jian Lin, Fan Zhang, Meng Wei. Spreading rate dependence of morphological characteristics in global oceanic transform faults[J]. Acta Oceanologica Sinica, 2021, 40(4): 39-64. doi: 10.1007/s13131-021-1722-5
Citation: Yiming Luo, Jian Lin, Fan Zhang, Meng Wei. Spreading rate dependence of morphological characteristics in global oceanic transform faults[J]. Acta Oceanologica Sinica, 2021, 40(4): 39-64. doi: 10.1007/s13131-021-1722-5

doi: 10.1007/s13131-021-1722-5

Spreading rate dependence of morphological characteristics in global oceanic transform faults

Funds: The foundation of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0205; the National Natural Science Foundation of China under contract Nos 41976064, 41890813, 41976066, 91958211, and 41706056; the scholarship of China Scholarship Council; the foundations of the Chinese Academy of Sciences under contract Nos Y4SL021001, QYZDY-SSW-DQC005, 133244KYSB20180029, and 131551KYSB20200021; the National Key Research and Development Program of China under contract Nos 2018YFC0309800 and 2018YFC0310105; the Foundation of the China Ocean Mineral Resources Research and Development Association under contract No. DY135-S2-1-04; the Guangdong Basic and Applied Basic Research Foundation under contract No. 2021A1515012227.
More Information
    Corresponding author: E-mail: zhangfan@scsio.ac.cn
  • †These authors contributed equally to this work
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
    †These authors contributed equally to this work
  • Figure  1.  Global tectonic map showing plate boundaries. Black lines denote global plate boundaries. Green lines denote the ridge-transform systems. Red lines denote the 78 transform faults with relatively good bathymetric data and were investigated in this study for morphological parameters. JDF: Juan de Fuca Ridge; EPR: East Pacific Rise; CR: Chile Rise; PAR: Pacific-Antarctic Ridge; N. MAR: North Mid-Atlantic Ridge; S. MAR: South Mid-Atlantic Ridge; AAR: American-Antarctic Ridge; SWIR: Southwest Indian Ridge; ADEN: Aden Ridge; CIR: Central Indian Ridge; SEIR: Southeast Indian Ridge.

    Figure  2.  Examples of transform faults. Depth (a1) and free-air gravity anomaly (FAA) (a2) of the Clipperton transform fault, as an example of a fast-spreading ridge. The depth (b1) and FAA (b2) of the Romanche transform fault, as an example of a slow-spreading ridge. Profiles of seafloor topography (black) and FAA (blue) across Clipperton (c) and Romanche (d) transform faults. Dashed lines (L1 and L2) denote locations of the across-transform profiles. EPR: East Pacific Rise; MAR: South Mid-Atlantic Ridge; N.H.: nodal high.

    A2.  Examples of transform faults. a1. Seafloor depth and a2. FAA of the Zeehaen transform fault, as an example of an intermediate-spreading ridge; b1. Seafloor depth and b2. FAA of the Du Toit transform fault, as an example of an ultraslow-spreading ridge; c and d. profiles of seafloor topography (black) and FAA (blue) across the Zeehaen and Du Toit transform faults. Dashed lines (L1, L2) denote locations of across-transform profiles. N.B.: nodal basin; SEIR: Southeast Indian Ridge.

    Figure  3.  Distribution of full spreading rate of global transform faults. Colors: red (fast), green (intermediate), magenta (slow), and blue (ultraslow).

    Figure  4.  Distribution of full transform length (a1–a4) and transform sub-segment length (b1–b4). Red: fast; green: intermediate; magenta: slow; and blue: ultraslow. μ and σ of each panel denote mean and standard deviation of the best-fitting Gaussian distribution, respectively.

    Figure  5.  Distribution of full transform age offset (a1–a4) and transform sub-segment age offset (b1–b4). Red: fast; green: intermediate; magenta: slow; and blue: ultraslow. μ and σ of each panel denote mean and standard deviation of the best-fitting Gaussian distribution, respectively.

    Figure  6.  Full transform length (a), transform sub-segment length (b), full transform age offset (c), and transform sub-segment age offset versus full spreading rate (d). Filled circles and black lines show average values and standard deviations for each spreading rate, respectively. A: Andrew Bain; AC: Andrew Bain Segment C; B: Bullard; BB: Bullard Segment B; C: Chile; CA: Chile Segment A; CC: Chile Segment C; D: Doldrums; G: George V; R: Romanche; Sa: Saint Paul; Sh: Shackelton; Ta: Tasman; Th: Tharp; V: Valdavia. Red: fast; green: intermediate; magenta: slow; and blue: ultraslow.

    7.  Along ridge-transform profiles of seafloor depth (a1–k1) and FAA (a2–k2) of the global ridge-transform systems. Green lines denote along ridge-transform profiles, using the global bathymetry dataset. Black lines denote the 78 transform faults with relatively good bathymetric data and thus selected for detailed analysis of morphological parameters. Red lines denote ridge adjacent to the 78 analyzed transform faults. AAD: Australian-Antarctic Discordance; EPR: East Pacific Rise; PAR: Pacific-Antarctic Ridge; JDF: Juan de Fuca Ridge; SEIR: Southeast Indian Ridge; CR: Chile Rise; ADEN: Aden Ridge; CIR: Central Indian Ridge; N. MAR: North Mid-Atlantic Ridge; S. MAR: South Mid-Atlantic Ridge; AAR: American-Antarctic Ridge; SWIR: Southwest Indian Ridge.

    Figure  8.  Frequency distributions of seafloor depth (a1–k1) and FAA (a2–k2) of transform faults (black) and adjacent ridges (red) of the 78 analyzed transform systems. EPR: East Pacific Rise; PAR: Pacific-Antarctic Ridge; JDF: Juan de Fuca Ridge; SEIR: Southeast Indian Ridge; CR: Chile Rise; ADEN: Aden Ridge; CIR: Central Indian Ridge; N. MAR: North Mid-Atlantic Ridge; S. MAR: South Mid-Atlantic Ridge; AAR: American-Antarctic Ridge; SWIR: Southwest Indian Ridge. μT and μR of each panel denote mean of the best-fitting Gaussian distribution of transform faults and ridges, respectively.

    Figure  9.  Transform fault depth (a), adjacent ridges depth (b), and transform-ridge depth difference (c) versus full spreading rate of the 78 analyzed transform systems. Open circles and thin lines denote depth and standard deviation, respectively. Filled circles and black lines show average depth and standard deviation for each spreading rate, respectively. Red: fast; green: intermediate; magenta: slow; and blue: ultraslow. Bo: Bouvet; H: Heezen; Jan: Jan Mayen; R: Romanche; Th: Tharp.

    Figure  10.  Depth of nodal high (a) and nodal basin (b) versus full spreading rate. In a and b, red: fast; green: intermediate; magenta: slow; and blue: ultraslow. Frequency distribution of the depth of nodal basin (black) and nodal high (red) for each spreading rate group. Curves denote the best-fitting Gaussian distribution. μN.H. and μN.B. of each panel denote mean of the best-fitting Gaussian distribution of nodal highs and nodal basins, respectively.

    Figure  11.  Correlation of width of transform faults with full transform age offset (a), and mid-transform lithospheric thickness (b). Red: fast; green: intermediate; magenta: slow; and blue: ultraslow. In b, gray layer shows a lithospheric plate with a thickness of hL. This corresponds to a special case when a transform valley is bounded by two inward-dipping conjugate normal faults with dip angle (α). The dashed lines show the expected dependence of the transform width (w) on plate thickness, with a dipping angle of 20° and 60°, respectively. Aii: Atlantis II; BB: Bullard B; R: Romanche.

    A4.  Maps of the transform systems with major morphological anomalies: Andrew Bain (a), Atlantis II (b), Bullard (c), Heezen and Tharp (d), Bouvet (e), and Jan Mayen (f). OCC: Oceanic core complex; SWIR: Southwest Indian Ridge; AAR: American-Antarctic Ridge; PAR: Pacific-Antarctic Ridge; MAR: Mid-Atlantic Ridge.

    Figure  12.  The maximum moment magnitude ($M_{\rm{w}}^{{\rm{max}}} $) of the transform earthquake versus transform sub-segment length (a), full spreading rate (b), transform sub-segment age offset (c), and seismogenic area (d, At). Open circles denote Mwmax of the global transform faults. Filled circles and black thin lines show the average $M_{\rm{w}}^{{\rm{max}}} $ and standard deviations for each spreading rate. Color definition is the same as in Fig. 3. Gray squares in b show the empirical corner magnitudes of three subgroups by maximum likelihood. The solid curve denotes the calculated corner magnitude (Bird et al., 2002). Dashed curves in d show the calculated Mw dependence on At with slip (S) of 60 cm and 0.5 cm.

    A1.  Topography maps of tectonic regions studied. a. JDF: Juan de Fuca Ridge; b. EPR: East Pacific Rise; c. ADEN-CIR: Aden Ridge-Central Indian Ridge; d. CR: Chile Rise; e. N. MAR: North Mid-Atlantic Ridge; f. S. MAR: South Mid-Atlantic Ridge; g. PAR: Pacific-Antarctic Ridge; h. SWIR: Southwest Indian Ridge; and i. SEIR: Southeast Indian Ridge. Yellow stars: mid-point of a transform sub-segment analyzed for length. Black lines: transform depth analyzed. Red lines: adjacent ridges depth analyzed. Green lines: along ridge-transform profiles from the global bathymetry dataset; Blue dots: ridge-transform intersections.

    A3.  Correlation between FAA and depth of the analyzed transform faults (black) and adjacent ridges (red). Multiple regions: a. EPR: East Pacific Rise; b. PAR: Pacific-Antarctic Ridge; c. JDF: Juan de Fuca Ridge; d. SEIR: Southeast Indian Ridge; e. CR: Chile Rise; f. ADEN: Aden Ridge; g. CIR: Central Indian Ridge; h. N. MAR: North Mid-Atlantic Ridge; i. S. MAR: South Mid-Atlantic Ridge; j. AAR: American-Antarctic Ridge; k. SWIR: Southwest Indian Ridge. Grey lines represent the best-fitting lines of the ridge values for each region.

    A2.   Depth of 78 ridge-transform fault systems

    No.1)NameDT/kmSTD of DT/kmDR/kmDR1/kmSTD of DR1/kmDR2/kmSTD of DR2/kmDTDR/kmSTD of (DTDR)/km
    1Alula Fartak3.900.773.563.490.463.630.340.341.17
    2Amsterdam2.970.542.412.070.082.760.080.560.62
    3–5Andrew Bain5.540.733.714.320.483.100.631.831.28
    6Argo4.090.473.393.040.203.740.400.700.77
    7–8Ascension3.620.223.663.820.303.500.210.040.48
    9Atlantis4.710.324.244.250.314.230.490.480.72
    10Atlantis II5.320.764.144.170.654.120.461.181.32
    11Balleny2.980.442.412.730.082.080.070.570.51
    12Birubi4.450.503.863.970.313.740.230.600.77
    13–17Blanco3.080.622.802.250.023.350.260.280.76
    20Boomerang2.300.151.991.940.082.050.080.300.23
    21Bouvet4.770.312.061.490.352.630.492.720.73
    22Bullard A4.980.234.314.190.354.440.140.670.47
    23Bullard B5.310.964.284.390.154.180.361.021.21
    to be continued
    下载: 导出CSV

    A3.   Depth of ridge-transform intersections

    LatitudeLongitudeDepth
    /km
    Full rate
    /(mm·a–1)
    Nodal high
    /nodal basin
    LatitudeLongitudeDepth
    /km
    Full rate
    /(mm·a–1)
    Nodal high
    /nodal basin
    65.269°S 175.960°W 3.11 56.70 nodal high 11.517°S 12.996°W 4.50 29.98 nodal basin
    65.998°S 174.550°W 3.46 56.70 nodal high 7.077°S 12.979°W 4.89 29.51 nodal basin
    64.341°S 171.130°W 2.51 56.74 nodal high 17.705°S 12.962°W 4.21 30.28 nodal basin
    64.865°S170.200°W 2.46 56.74 nodal high 22.428°S 12.890°W 3.99 30.40 nodal basin
    166.100°S 62.199°W 3.25 47.58 nodal high 12.886°S 7.3049°W 3.89 29.54 nodal basin
    63.255°S 163.420°W 2.49 47.58 nodal high 22.749°S 12.806°W 3.36 30.40 nodal basin
    62.440°S 161.910°W 2.49 46.71 nodal high 28.194°S 12.637°W 4.38 30.35 nodal basin
    63.075°S 160.480°W 2.95 46.71 nodal high 28.823°S 12.443°W 3.70 30.19 nodal basin
    62.822°S 158.360°W 3.13 45.98 nodal high 5.1312°S 12.266°W 3.52 29.27 nodal basin
    63.241°S 157.370°W 3.04 45.98 nodal high 21.352°S 11.962°W 3.74 30.34 nodal basin
    62.091°S 155.760°W 2.87 64.73 nodal high 71.632°N 11.916°W 3.77 15.45 nodal basin
    62.382°S 155.120°W 2.59 64.73 nodal high 22.200°S 11.801°W 4.43 30.40 nodal basin
    59.460°S 151.250°W 2.34 68.94 nodal high 4.975°S 11.645°W 4.07 29.27 nodal basin
    59.767°S 150.380°W 2.37 68.94 nodal high 21.217°S 11.493°W 3.47 30.34 nodal basin
    57.468°S 148.020°W 2.41 71.90 nodal high 6.6507°S 11.236°W 3.99 29.51 nodal basin
    57.815°S 146.950°W 2.75 71.90 nodal high 46.977°S 10.497°W 2.70 27.44 nodal high
    55.794°S 144.810°W 3.06 74.49 nodal high 49.315°S 9.8428°W 4.22 26.90 nodal basin
    57.103°S 140.270°W 4.35 74.49 nodal basin 48.940°S 8.0912°W 3.62 26.90 nodal basin
    56.108°S 139.380°W 3.31 75.45 nodal high 50.679°S 7.1415°W 2.71 27.00 nodal high
    56.339°S 138.770°W 2.59 75.45 nodal high 57.357°S 6.9874°W 3.48 13.40 nodal high
    54.119°S 136.970°W 2.25 77.89 nodal high 57.895°S 6.957°W 4.99 13.43 nodal basin
    54.671°S 135.170°W 2.45 77.89 nodal high 70.982°N 6.6191°W 3.71 15.45 nodal basin
    53.755°S 134.470°W 2.64 78.82 nodal high 57.265°S 6.1008°W 3.41 13.40 nodal high
    44.444°N 130.420°W 2.38 51.06 nodal high 56.692°S 6.0138°W 3.16 14.00 nodal high
    55.410°S 127.720°W 2.69 78.82 nodal high 50.252°S 5.1492°W 2.95 27.00 nodal high
    54.821°S 127.400°W 2.63 79.02 nodal high 56.626°S 4.7143°W 2.93 14.00 nodal high
    42.992°N 126.610°W 3.54 51.06 nodal high 55.822°S 4.6404°W 4.90 14.51 nodal basin
    56.088°S 121.670°W 3.36 79.02 nodal high 54.254°S 2.4183°W 2.77 26.90 nodal high
    to be continued
    下载: 导出CSV

    Table  1.   Average and standard deviation (STD) values of morphological parameters of oceanic transform faults

    Parameter*Average/STD
    UltraslowSlowIntermediateFast
    LF/km185.3/152.7172.9/201.1158.2/145.5108.1/49.5
    LS/km163.9/118.3122.9/120.4108.6/98.244.7/38.1
    AOF/Ma29.9/26.611.0/12.54.7/4.32.1/1.2
    AOS/Ma26.4/22.27.8/8.23.2/2.80.8/1.0
    DT/km4.60/0.854.27/0.593.53/0.713.42/0.36
    DR/km3.44/0.783.68/0.442.86/0.572.72/0.23
    DTDR/km–1.16/0.60–0.59/0.52–0.66/0.60–0.70/0.39
    DN.H./km3.25/0.643.27/0.602.75/0.443.01/0.24
    DN.B./km4.50/0.733.95/0.573.68/0.633.39/0.14
    Note: * LF: full transform length; LS: transform sub-segment length; AOF: full transform age offset; AOS: transform sub-segment age offset; DT: depth of transform fault; DR: depth of adjacent ridges; DTDR: depth difference of transform fault and ridge; DN.H.: depth of nodal high; DN.B.: depth of nodal basin.
    下载: 导出CSV

    Table  2.   Transform width at the mid-point of 44 investigated transform faults

    Transform faultWidth/kmTransform faultWidth/kmTransform faultWidth/kmTransform faultWidth/km
    Alula Fartak 29 Clipperton 25 Islas Orcadas 32 SEIR 120E 14
    Amsterdam 13 Conrad 38 Kane 26 SEIR 88E 10
    Ascension 36 Du Toit 35 MAR 15 20 27 SEIR 96E 18
    Atlantis 30 Euroka 19 Marie Celeste 28 Shaka 36
    Atlantis II 45 Falkland 26 Menard 12 Tharp 20
    Blanco 15 Garrett B 22 Oceanographer 27 Valdavia 17
    Bouvet 36 Geelvinck 20 Orozco 16 Vema 37
    Bullard A 36 Gemino 36 Rivera 23 Vema II 27
    Bullard B 40 Hayes 27 Romanche 50 Vlamingh 36
    Chain 36 Heezen 20 SEIR 100E 18 Wilkes 25
    CIR 12°12’ 30 Hillegom’s Hole 14 SEIR 106E 25 Zeewolf 21
    下载: 导出CSV

    Table  3.   Examples of transform faults with major anomalies

    Transform faultRidge systemLF>400 kmLS>400 kmAOF>40 MaAOS>40 MaDepth anomaliesWidth>40 km
    Andrew BainSWIR
    Atlantis IISWIR
    BouvetSWIR
    BullardAAR
    ShackeltonAAR
    DoldrumsMAR
    RomancheMAR
    Saint PaulMAR
    Jan MayenMAR
    ChileCR
    ValdaviaCR
    George VSEIR
    TasmanSEIR
    HeezenPAR
    TharpPAR
    下载: 导出CSV

    A1.   Compilation of global oceanic transform faults with a total of 201 individual fault segments1)

    No.NameSegment mid-pointLength/kmFull rate/
    (mm·a–1)
    Age offset/Ma$M_{\rm{w}}^{\max } $At/km2
    LatitudeLongitude
    1Alula Fartak13.94°N51.71°E20318.9021.486.62724
    2Amsterdam36.70°S78.69°E10862.023.486.2584
    3Andrew Bain A47.49°S32.23°E8713.3513.036.4909
    4Andrew Bain B48.55°S31.30°E14813.3422.196.42018
    5Andrew Bain C51.00°S29.07°E47113.3370.676.411464
    6Argo13.59°S66.35°E10233.336.126.0731
    7Ascension A7.37°S13.25°W5829.543.935.6333
    8Ascension B6.88°S12.14°W20329.5113.766.02180
    9Atlantis30.06°N42.35°W6322.405.635.8432
    10Atlantis II32.76°S57.04°E20112.0233.445.83365
    11Balleny61.43°S154.81°E35064.5010.856.73340
    12Birubi49.50°S127.26°E14869.624.255.4884
    13Blanco A44.33°N129.92°W9451.063.686.2523
    14Blanco B44.05°N129.23°W2451.010.946.267
    15Blanco C43.89°N128.84°W4150.991.615.4150
    16Blanco D43.45°N127.81°W13550.945.306.4900
    17Blanco E43.08°N126.83°W4150.931.616.4151
    18Bode Verde A12.25°S14.59°W5630.023.734.9313
    19Bode Verde B11.68°S13.70°W16229.9810.816.21542
    20Boomerang37.36°S78.21°E3562.151.135.8108
    21Bouvet54.26°S1.92°E20112.7231.606.63271
    22Bullard A59.13°S17.14°W9512.9914.636.21051
    23Bullard B58.18°S11.49°W52613.4378.336.813479
    24Chain1.24°S14.52°W31328.5821.96.84242
    25Challenger A37.00°S96.62°W7846.563.355.8414
    26Challenger B37.11°S95.72°W6746.582.88329
    27Challenger C37.25°S95.19°W2046.610.8653
    28Challenger D37.32°S94.58°W8246.623.525.4446
    29Charlie Gibbs A52.62°N33.26°W20321.7318.687.12541
    30Charlie Gibbs B52.12°N30.82°W11021.8310.085.81011
    31Chile 38S A38.33°S93.63°W4346.851.845.3169
    32Chile 38S B38.41°S92.98°W6846.862.90336
    33Chile 39S38.96°S92.07°W8446.983.586.1460
    34Chile A35.14°S106.51°W49346.4221.246.36580
    35Chile B35.90°S102.79°W18646.468.016.71525
    36Chile C36.21°S99.42°W42046.4318.096.55174
    37Chiloe43.03°S83.08°W6147.822.555.6282
    38CIR 10S10.09°S66.56°E7630.954.915.0488
    39CIR 12 1211.85°S65.99°E10631.906.655.7791
    40CIR 16S16.29°S66.97°E11035.586.185.6792
    41CIR 1S1.19°S67.52°E5029.873.355.8265
    42CIR 5S4.73°S68.59°E4931.003.165.3252
    43CIR 6S6.83°S68.24°E8931.355.685.4614
    44CIR 7S7.61°S68.08°E6230.174.115.4364
    45Clipperton10.22°N103.95°W84106.281.586.6307
    46Conrad55.71°S3.16°W19814.5127.296.72995
    47Darwin45.90°S76.36°W5348.302.195.9227
    48Discovery A4.01°S104.35°W36123.550.586.080
    49Discovery B4.00°S104.01°W27123.480.445.852
    50Discovery II A43.30°S41.66°E12412.9119.216.41573
    51Discovery II B41.86°S42.59°E21612.8933.516.73620
    52Doldrums A8.82°N40.02°W10925.568.535.6922
    53Doldrums B8.21°N38.78°W16225.7412.597.01664
    54Doldrums C7.72°N37.38°W14925.8911.516.21464
    55Doldrums D7.40°N35.66°W22926.0017.626.52783
    to be continued
    下载: 导出CSV
    Continued from Table A1
    No.NameSegment mid-pointLength/kmFull rate/
    (mm·a–1)
    Age offset/Ma$M_{\rm{w}}^{\max } $At/km2
    LatitudeLongitude
    56Doldrums E7.19°N34.28°W7726.085.905.9542
    57Du Toit53.01°S25.48°E13013.2919.566.21664
    58Egeria20.13°S66.58°E4638.132.415.5207
    59Eric Simpson43.73°S39.25°E8913.0313.666.7952
    60Euroka49.23°S126.10°E13469.763.845.6761
    61Falkland47.31°S12.25°W18127.4413.196.01904
    62Flinders20.24°S67.26°E6538.483.385.2346
    63Gallieni36.64°S52.32°E11412.3418.486.91418
    64Garrett A13.41°S112.15°W39133.990.585.987
    65Garrett B13.42°S111.80°W26133.940.395.247
    66Garrett C13.449°S111.525°W32133.900.485.7
    67Garrett D13.476°S111.242°W27133.860.405.8
    68Gauss35.00°S54.12°E5912.239.656.2530
    69Gazelle35.80°S53.43°E8112.2713.205.8852
    70Geelvinck41.96°S84.71°E30365.609.245.52668
    71Gemino22.78°S69.29°E3840.991.855.4150
    72George V A51.35°S139.72°E23567.496.966.51797
    73George V B53.24°S140.55°E17967.305.325.81196
    74GoC 24N24.24°N109.05°W6150.372.426.1885
    75GoC 25N24.98°N109.52°W11949.854.776.7753
    76Gofar A4.59°S105.85°W95124.551.536.2341
    77Gofar B4.58°S105.26°W29124.400.476.058
    78Gofar C4.56°S104.88°W46124.300.746.1115
    79Gough39.79°S16.23°W5628.983.864.9319
    80Guafo44.70°S80.15°W28648.1011.896.42857
    81Guamblin45.71°S77.37°W8048.273.316.0422
    82Hayes33.66°N38.65°W8021.657.396.1629
    83Heemskerck A50.01°S115.58°E1970.340.5440
    84Heemskerck B49.88°S115.93°E2470.340.6857
    85Heemskerck C49.65°S116.19°E2770.340.7768
    86Heemskerck D49.40°S116.47°E3170.330.8884
    87Heezen55.42°S124.53°W38279.029.676.43441
    88Herron56.29°S139.07°W2675.450.695.963
    89Hillegom’s Hole38.66°S78.31°E5962.701.886.4235
    90Hollister A54.22°S136.90°W2377.890.596.351
    91Hollister B54.35°S136.23°W6277.931.596.4227
    92Hollister C54.53°S135.39°W3477.950.876.192
    93Indomed39.47°S46.11°E14112.7322.155.81921
    94Islas Orcadas54.18°S6.10°E10012.8515.566.11142
    95Jan Mayen A71.37°S9.64°W12715.4516.446.71491
    96Jan Mayen B71.14°N7.39°W2715.453.506.7145
    97Kane23.74°N45.62°W14623.4312.466.41492
    98L’Astronome59.65°S150.85°W5668.941.626.0207
    99Le Geographe57.63°S147.50°W7071.901.955.9283
    100Mabahiss3.04°S68.12°E4230.482.765.6202
    101MAR 15 2015.28°N45.74°W19323.5716.386.02262
    102MAR 18S17.72°S13.37°W9130.346.005.5645
    103MAR 21S21.23°S11.72°W4530.402.96224
    104MAR 22S A22.82°S13.26°W8530.395.595.4582
    105MAR 22S B22.28°S12.37°W8630.405.665.2592
    106MAR 22S C22.02°S11.83°W2230.401.455.276
    107MAR 25 50S25.66°S13.74°W3930.322.575.5181
    108MAR 25S24.90°S13.55°W3730.352.445.4167
    109MAR 29 45S29.76°S13.77°W2730.101.79104
    110MAR 29S A29.19°S13.45°W7430.134.915.0475
    to be continued
    下载: 导出CSV
    Continued from Table A1
    No.NameSegment mid-pointLength/kmFull rate/
    (mm·a–1)
    Age offset/Ma$M_{\rm{w}}^{\max } $At/km2
    LatitudeLongitude
    111MAR 29S B28.87°S12.77°W5930.153.915.2338
    112MAR 32S A32.50°S14.42°W2329.871.5482
    113MAR 32S B32.27°S13.95°W5729.893.815.3322
    114MAR 32S C32.11°S13.48°W2929.901.945.9117
    115MAR 34S34.16°S14.83°W6929.714.645.2431
    116MAR 35S35.40°S16.51°W25029.6016.896.92975
    117MAR 40S40.35°S16.64°W4028.902.77192
    118MAR 50S49.13°S9.14°W11026.908.185.4911
    119MAR 5S5.04°S11.94°W7829.275.335.6521
    120Marathon12.64°N44.46°W8824.417.215.5684
    121Marie Celeste17.51°S66.00°E21935.9912.176.62213
    122Marion46.47°S33.66°E10913.2216.496.21281
    123Melville29.84°S60.78°E9211.7415.676.91054
    124Menard49.56°S115.24°W20885.474.876.41330
    125Mendocino40.3735°N126.039°W23749.489.58
    126Novara31.43°S58.41°E4511.937.54362
    127Oceanographer35.18°N35.64°W12121.2711.386.31182
    128Orozco A15.41°N105.11°W4687.811.055.3137
    129Orozco B15.16°N104.58°W2388.850.525.648
    130Owen11.42°N57.54°E33522.8429.336.55254
    131PAR 16161.78°S161.50°E7745.983.356.0408
    132PAR 16362.10°S163.36°E8546.713.645.3470
    133PAR 16562.38°S165.46°E8947.583.745.9499
    134Pitman64.53°S170.78°W7156.742.505.3325
    135Prince Edward45.45°S35.13°E14613.1922.146.41989
    136Quebrada A3.74°S103.68°W27123.120.445.652
    137Quebrada B3.73°S103.44°W22123.050.365.338
    138Quebrada C3.70°S103.189°W27122.970.444.952
    139Quebrada D3.73°S102.86°W42122.940.685.6
    140Raitt A54.33°S120.10°W8880.942.175.4376
    141Raitt B54.49°S118.94°W5880.991.436.0201
    142Rio Grande28.23°S12.94°W5730.193.785.2321
    143Rivera A19.57°N108.68°W17773.004.856.31130
    144Rivera B18.76°N107.16°W19773.005.406.91326
    145Romanche0.53°S20.63°W87828.2762.127.120036
    146Saint Exupery62.24°S155.42°W4264.731.305.7139
    147Saint Paul A0.93°N29.02°W29727.7121.446.63982
    148Saint Paul B0.87°N27.04°W14627.7710.515.91371
    149Saint Paul C0.74°N25.92°W9627.836.906.1730
    150Saint Paul D0.62°N25.23°W5027.883.596.0274
    151Sealark3.88°S68.47°E6330.784.095.1369
    152SEIR 100E47.68°S99.81°E12969.463.716.5721
    153SEIR 106E A49.09°S106.26°E5670.111.605.0205
    154SEIR 106E B48.64°S106.79°E5970.121.685.5222
    155SEIR 12049.49°S120.42°E15470.194.395.3935
    156SEIR 12149.36°S121.53°E8070.132.285.3350
    157SEIR 12249.71°S122.73°E5070.041.435.3173
    158SEIR 88E41.92°S88.42°E6566.471.965.8264
    159SEIR 96E A45.66°S96.03°E8968.692.596.4415
    160SEIR 96E B46.43°S96.14°E4068.821.165.7125
    161Shackelton59.77°S59.12°W3326.8397.226.69477
    162Shaka53.55°S9.02°E19912.9230.806.83198
    163Siqueiros A8.40°N104.05°W24112.240.435.546
    164Siqueiros B8.38°N103.66°W34112.480.605.677
    165Siqueiros C8.36°N103.42°W18112.680.325.830
    to be continued
    下载: 导出CSV
    Continued from Table A1
    No.NameSegment mid-pointLength/kmFull rate/
    (mm·a–1)
    Age offset/Ma$M_{\rm{w}}^{\max } $At/km2
    LatitudeLongitude
    166Siqueiros D8.36°N103.21°W17112.890.305.827
    167Siqueiros E8.38°N103.00°W17112.960.305.927
    168Sovanco48.98°N129.77°W13553.905.016.7875
    169St Vincent54.50°S144.12°E5866.501.745.9222
    170Strakhov3.94°N32.08°W10826.968.015.5885
    171Tasman A55.23°S146.33°E9066.052.736.9431
    172Tasman B56.59°S147.28°E21865.826.626.41626
    173Tasman C57.80°S148.47°E6265.511.896.5247
    174Tasman D58.87°S149.25°E17365.295.306.31154
    175Tasman E59.89°S150.57°E8265.292.516.5377
    176Ter Tholen33.44°S77.72°E8960.262.955.3443
    177Tetyaev16.25°S13.75°W12330.288.125.51015
    178Tharp54.59°S131.12°W46278.8211.726.64582
    179Tomayo23.08°N108.34°W6550.952.556.5301
    180Udintsev56.41°S142.43°W32574.498.736.42781
    181Vacquier53.04°S118.09°W5282.291.265.8170
    182Valdavia A41.09°S91.56°W4947.422.075.4204
    183Valdavia B41.20°S90.81°W7747.453.255.8402
    184Valdavia C41.30°S89.74°W9747.474.095.7568
    185Valdavia D41.35°S88.44°W11947.485.015.7772
    186Valdavia E41.41°S86.72°W16547.516.955.91260
    187Valdavia F41.49°S85.14°W6947.542.905.6340
    188Valdavia G41.57°S84.52°W2347.560.9765
    189Vema10.78°N42.29°W30724.9824.586.94407
    190Vema II8.92°S67.44°E23730.6315.486.22700
    191Vityaz5.69°S68.37°E10531.146.745.7790
    192Vlamingh41.47°S80.36°E12364.353.826.4697
    193Warringa A49.41°S123.38°E3870.001.095.3115
    194Warringa B49.07°S123.87°E4969.971.40168
    195Wilkes A9.02°S109.21°W35129.790.545.975
    196Wilkes B9.06°S108.69°W74129.741.146.1230
    197Yaquina A6.25°S107.31°W23126.660.365.640
    198Yaquina B6.18°S106.99°W21126.510.335.235
    199Zeehaen50.12°S114.12°E7170.352.025.6292
    200Zeewolf A35.44°S78.46°E3261.411.045.095
    201Zeewolf B35.18°S78.64°E2961.360.955.382
    Notes: 1) Data are from Wolfson-Schwehr (2015) and Wolfson-Schwehr & Boettcher (2019). – means no earthquakes recorded by the International Seismic Network or no estimate of At provided by Wolfson-Schwehr (2015) and Wolfson-Schwehr and Boettcher (2019).
    下载: 导出CSV
    Continued from Table A2
    No.NameDT/kmSTD of DT/kmDR/kmDR1/kmSTD of DR1/kmDR2/kmSTD of DR2/kmDTDR/kmSTD of (DTDR)/km
    24Chain5.060.394.254.410.174.090.310.810.63
    29Charlie Gibbs A3.930.213.062.580.163.540.380.870.48
    30Charlie Gibbs B4.160.183.533.600.413.470.330.630.55
    34–36Chile3.830.373.583.190.203.970.320.250.63
    39CIR 12123.890.423.793.950.213.640.250.100.65
    45Clipperton2.970.282.602.580.042.630.110.360.36
    46Conrad4.700.373.893.640.324.140.280.810.67
    48–49Discovery3.500.253.062.750.033.380.090.430.32
    50Discovery II A4.360.333.422.970.753.880.590.941.01
    51Discovery II B4.820.353.683.820.563.530.131.140.70
    52–56Doldrums4.370.374.144.370.203.910.190.230.57
    57Du Toit5.530.294.114.100.274.130.581.410.72
    59Eric Simpson3.400.532.522.230.462.810.390.880.95
    60Euroka4.640.234.494.350.094.630.060.150.31
    61Falkland3.870.623.023.380.172.670.460.850.94
    64–67Garrett3.870.522.702.710.042.700.161.170.62
    70Geelvinck3.840.352.712.860.162.560.101.130.47
    71Gemino2.960.393.413.350.053.460.160.450.49
    72–73GeorgeV3.310.282.852.750.202.950.150.460.46
    76–78Gofar3.590.352.702.640.092.750.030.890.41
    82Hayes3.850.293.022.670.343.380.250.830.58
    87Heezen4.510.942.462.630.112.300.052.041.02
    88Herron2.900.072.772.870.182.680.080.130.20
    89Hillegom’s Hole2.940.552.152.140.092.150.130.800.66
    90–92Hollister3.040.642.322.250.042.400.040.720.68
    93Indomed3.960.303.233.090.373.370.130.730.55
    94Islas Orcadas4.590.273.763.740.243.770.250.830.51
    95–96JanMayen2.220.471.671.310.682.020.880.551.25
    97Kane4.190.264.204.380.304.030.490.020.66
    101MAR 15204.570.294.144.300.553.990.320.430.72
    116MAR 35S4.020.233.663.900.203.430.370.350.52
    121Marie Celeste4.500.583.353.100.273.600.511.140.97
    122Marion4.960.353.153.000.583.310.901.811.09
    124Menard3.900.582.332.330.122.330.041.570.66
    127Oceanographer4.040.252.952.810.503.100.531.080.77
    128–129Orozco3.470.372.632.350.062.920.080.830.45
    130Owen4.580.234.154.050.214.250.260.430.46
    135Prince Edward4.730.322.873.240.912.510.831.861.19
    136–139Quebrada4.010.243.183.410.142.950.030.830.33
    140–141Raitt3.170.412.472.440.042.510.030.690.44
    143–144Rivera4.101.012.722.670.062.760.071.381.07
    145Romanche5.590.823.783.760.253.790.371.811.13
    147–150Saint Paul3.710.953.603.360.433.850.130.111.23
    152SEIR100E3.390.252.712.700.042.730.050.680.30
    153–154SEIR107E3.720.333.543.660.093.420.110.180.43
    155Zeehaen4.390.263.793.220.144.370.070.590.36
    156St Vincent2.960.052.502.540.082.450.120.460.15
    158SEIR 88E3.590.432.582.560.082.610.031.000.48
    159SEIR 96E A2.500.542.993.240.052.740.110.490.62
    160SEIR 96E B3.520.152.912.540.033.290.130.610.23
    162Shaka5.160.494.073.790.304.360.181.080.73
    163–167Siqueiros3.300.422.672.580.042.760.020.640.45
    171–175Tasman2.640.512.582.350.112.820.050.060.59
    176Ter Tholen3.690.163.333.670.062.980.090.370.24
    178Tharp4.960.712.552.390.042.710.142.400.80
    180Udintsev4.260.913.112.660.133.560.201.151.08
    to be continued
    下载: 导出CSV
    Continued from Table A2
    No.NameDT/kmSTD of DT/kmDR/kmDR1/kmSTD of DR1/kmDR2/kmSTD of DR2/kmDTDR/kmSTD of (DTDR)/km
    181Vacquier3.010.142.672.400.112.940.100.340.25
    182–188Valdavia4.450.493.553.750.273.350.400.900.82
    189Vema5.020.394.404.530.444.270.400.620.81
    190Vema II5.190.883.703.830.353.570.451.481.28
    192Vlamingh3.350.312.652.640.072.660.020.710.36
    195–196Wilkes3.110.352.852.760.102.940.040.260.42
    197–198Yaquina3.170.212.792.810.032.770.040.380.24
    200–201Zeewolf3.660.333.273.120.073.410.080.390.40
    160SEIR 96E B3.520.152.912.540.033.290.130.610.23
    162Shaka5.160.494.073.790.304.360.181.080.73
    163–167Siqueiros3.300.422.672.580.042.760.020.640.45
    171–175Tasman2.640.512.582.350.112.820.050.060.59
    176Ter Tholen3.690.163.333.670.062.980.090.370.24
    178Tharp4.960.712.552.390.042.710.142.400.80
    180Udintsev4.260.913.112.660.133.560.201.151.08
    181Vacquier3.010.142.672.400.112.940.100.340.25
    182–188Valdavia4.450.493.553.750.273.350.400.900.82
    189Vema5.020.394.404.530.444.270.400.620.81
    190Vema II5.190.883.703.830.353.570.451.481.28
    192Vlamingh3.350.312.652.640.072.660.020.710.36
    195–196Wilkes3.110.352.852.760.102.940.040.260.42
    197–198Yaquina3.170.212.792.810.032.770.040.380.24
    200–201Zeewolf3.660.333.273.120.073.410.080.390.40
    Notes: 1) Segment No. same as in Table A1.
    下载: 导出CSV
    Continued from Table A3
    LatitudeLongitudeDepth
    /km
    Full rate
    /(mm·a–1)
    Nodal high
    /nodal basin
    LatitudeLongitudeDepth
    /km
    Full rate
    /(mm·a–1)
    Nodal high
    /nodal basin
    54.111°S 120.640°W 3.33 80.94 nodal basin 55.635°S 1.5458°W 4.25 14.51 nodal basin
    52.946°S 118.590°W 2.96 82.29 nodal high 55.183°S 1.5414°W 3.39 14.50 nodal basin
    54.629°S 118.430°W 2.69 80.94 nodal high 54.026°S 1.3968°W 2.59 26.90 nodal high
    53.077°S 117.690°W 2.73 82.29 nodal high 54.814°S 0.48093°W 2.66 14.50 nodal high
    49.276°S 116.630°W 3.55 85.47 nodal basin 54.981°S 0.47024°E 1.77 12.72 nodal high
    49.875°S 113.880°W 2.94 85.47 nodal high 53.632°S 3.0515°E 4.00 12.72 nodal basin
    13.312°S 112.270°W 2.85 133.99 nodal high 54.552°S 5.5524°E 4.42 12.85 nodal basin
    13.537°S 111.040°W 3.17 133.99 nodal high 53.841°S 6.6443°E 4.33 12.85 nodal basin
    8.8823°S 109.810°W 2.87 129.79 nodal high 54.307°S 7.9931°E 4.47 12.92 nodal basin
    20.012°N 109.460°W 2.92 73.00 nodal high 52.902°S 9.928°E 4.44 12.92 nodal basin
    35.098°S 109.020°W 3.97 46.42 nodal basin 53.547°S 25.206°E 4.85 13.29 nodal basin
    9.180°S 108.260°W 3.20 129.79 nodal high 52.430°S 25.893°E 4.96 13.29 nodal basin
    6.2344°S 107.400°W 3.09 126.66 nodal high 52.847°S 27.818°E 5.45 13.34 nodal basin
    6.2962°S 106.900°W 2.84 126.66 nodal high 47.033°S 32.147°E 4.83 13.34 nodal basin
    4.4948°S 106.270°W 2.73 124.55 nodal high 47.340°S 33.468°E 4.88 13.22 nodal basin
    18.475°N 106.220°W 2.73 73.00 nodal high 45.981°S 33.921°E 3.63 13.22 nodal basin
    15.323°N 105.360°W 3.11 87.81 nodal high 46.324°S 34.905°E 3.86 13.19 nodal basin
    4.7268°S 104.650°W 3.34 124.55 nodal high 44.849°S 35.415°E 4.26 13.19 nodal basin
    3.9691°S 104.530°W 2.91 123.55 nodal high 44.143°S 39.161°E 3.69 13.03 nodal high
    15.173°N 104.460°W 3.29 87.81 nodal basin 43.259°S 39.466°E 3.35 13.03 nodal high
    10.101°N 104.340°W 2.57 106.28 nodal high 43.636°S 41.582°E 4.63 12.91 nodal basin
    8.3405°N 104.170°W 2.90 112.24 nodal high 42.735°S 41.805°E 4.61 12.91 nodal basin
    4.0426°S 103.790°W 3.37 123.55 nodal high 42.848°S 42.438°E 4.01 12.89 nodal basin
    3.6444°S 103.720°W 3.36 123.12 nodal high 40.877°S 42.855°E 3.97 12.89 nodal basin
    10.242°N 103.570°W 3.03 106.28 nodal high 40.151°S 46.033°E 3.51 12.73 nodal high
    8.5008°N 102.880°W 3.05 112.24 nodal high 38.867°S 46.244°E 3.52 12.73 nodal high
    3.8068°S 102.610°W 3.41 123.12 nodal high 13.108°N 51.270°E 3.17 18.90 nodal basin
    37.052°S 97.114°W 3.48 46.56 nodal basin 14.731°N 52.207°E 3.88 18.90 nodal basin
    36.333°S 97.066°W 3.71 46.42 nodal basin 37.120°S 52.350°E 5.23 12.34 nodal basin
    37.347°S 95.285°W 3.76 46.62 nodal basin 36.191°S 52.353°E 5.21 12.34 nodal basin
    37.074°S 95.259°W 3.55 46.56 nodal basin 35.559°S 53.435°E 5.49 12.27 nodal basin
    37.295°S 94.098°W 2.99 46.62 nodal basin 36.160°S 53.459°E 4.25 12.27 nodal basin
    38.335°S 94.081°W 3.25 46.85 nodal basin 14.370°N 53.821°E 3.16 19.00 nodal basin
    38.343°S 92.568°W 3.42 46.85 nodal basin 14.761°N 54.013°E 2.91 19.00 nodal basin
    39.011°S 92.534°W 3.23 46.98 nodal basin 34.737°S 54.160°E 4.50 12.23 nodal basin
    40.279°S 91.867°W 3.88 46.80 nodal basin 35.338°S 54.167°E 4.16 12.23 nodal basin
    41.111°S 91.831°W 3.78 47.42 nodal basin 10.127°N 56.727°E 4.34 22.84 nodal basin
    38.954°S 91.568°W 3.44 46.98 nodal basin 33.621°S 57.055°E 5.63 12.02 nodal basin
    40.242°S 91.540°W 3.57 46.80 nodal basin 31.834°S 57.121°E 4.28 12.02 nodal high
    41.259°S 91.256°W 3.65 47.45 nodal basin 12.646°N 58.351°E 4.51 22.84 nodal basin
    41.111°S 91.242°W 3.96 47.42 nodal basin 31.679°S 58.437°E 4.32 11.93 nodal basin
    41.188°S 90.353°W 4.38 47.45 nodal basin 31.171°S 58.448°E 4.38 11.93 nodal basin
    41.335°S 90.349°W 3.99 47.47 nodal basin 29.523°S 60.700°E 5.97 11.74 nodal basin
    41.244°S 89.079°W 3.57 47.47 nodal basin 30.311°S 60.804°E 5.29 11.74 nodal basin
    41.419°S 89.058°W 4.05 47.48 nodal basin 17.993°S 65.073°E 3.43 35.99 nodal basin
    41.311°S 87.733°W 4.20 47.48 nodal basin 12.144°S 65.699°E 3.93 31.90 nodal basin
    41.515°S 87.705°W 4.64 47.51 nodal basin 13.966°S 65.875°E 3.14 33.33 nodal basin
    41.303°S 85.642°W 4.32 47.51 nodal basin 11.248°S 66.171°E 3.13 31.00 nodal basin
    41.541°S 85.608°W 3.95 47.54 nodal basin 10.321°S 66.300°E 4.29 30.90 nodal basin
    41.438°S 84.661°W 3.92 47.54 nodal basin 20.274°S 66.347°E 3.47 38.13 nodal basin
    41.601°S 84.639°W 4.41 47.56 nodal basin 11.612°S 66.437°E 4.13 31.90 nodal basin
    41.531°S 83.897°W 3.97 47.56 nodal basin 16.531°S 66.626°E 3.39 35.58 nodal basin
    43.084°S 83.406°W 3.78 47.82 nodal basin 9.5839°S 66.673°E 4.69 30.95 nodal basin
    43.002°S 82.685°W 3.95 47.82 nodal basin 20.047°S 66.750°E 4.23 38.13 nodal basin
    45.008°S 81.923°W 3.92 48.10 nodal basin 10.819°S 66.758°E 3.10 31.00 nodal basin
    to be continued
    下载: 导出CSV
    Continued from Table A3
    LatitudeLongitudeDepth
    /km
    Full rate
    /(mm·a–1)
    Nodal high
    /nodal basin
    LatitudeLongitudeDepth
    /km
    Full rate
    /(mm·a–1)
    Nodal high
    /nodal basin
    44.478°S 78.347°W 3.57 48.10 nodal basin 13.353°S 66.814°E 3.83 33.33 nodal basin
    45.867°S 77.905°W 2.93 48.27 nodal basin 9.8798°S 66.883°E 3.94 30.90 nodal high
    45.646°S 76.864°W 3.96 48.27 nodal basin 17.011°S 66.951°E 3.80 35.99 nodal basin
    46.006°S 76.715°W 3.25 48.30 nodal basin 20.416°S 66.964°E 3.79 38.48 nodal basin
    45.819°S 76.008°W 3.28 48.30 nodal basin 0.43337°S 67.011°E 3.43 29.80 nodal basin
    15.382°N 46.632°W 5.00 23.57 nodal basin 0.1128°S 67.255°E 3.61 29.80 nodal basin
    23.833°N 46.303°W 5.05 23.43 nodal basin 1.4151°S 67.395°E 3.52 29.87 nodal basin
    23.617°N 44.923°W 5.63 23.43 nodal basin 16.050°S 67.427°E 3.88 35.58 nodal basin
    12.626°N 44.876°W 4.27 24.41 nodal basin 20.107°S 67.539°E 3.65 38.48 nodal basin
    15.192°N 44.855°W 4.98 23.57 nodal basin 1.0705°S 67.676°E 3.24 29.87 nodal basin
    12.542°N 44.100°W 4.55 24.41 nodal basin 20.450°S 67.753°E 3.08 38.40 nodal basin
    10.845°N 43.715°W 5.18 24.98 nodal basin 7.8644°S 67.848°E 3.57 30.63 nodal high
    30.101°N 42.686°W 4.65 22.40 nodal basin 7.1212°S 67.940°E 3.86 30.17 nodal high
    30.025°N 41.989°W 4.82 22.40 nodal basin 2.6653°S 67.960°E 3.71 30.40 nodal basin
    10.731°N 40.883°W 5.04 24.98 nodal basin 3.2343°S 68.000°E 3.33 30.48 nodal basin
    8.8442°N 40.491°W 5.00 25.56 nodal basin 6.0914°S 68.004°E 3.46 31.14 nodal basin
    8.8104°N 39.461°W 4.18 25.56 nodal basin 2.8857°S 68.237°E 3.41 30.48 nodal basin
    8.1857°N 39.461°W 5.06 25.74 nodal basin 20.201°S 68.238°E 2.98 38.40 nodal basin
    33.773°N 39.106°W 3.59 21.65 nodal basin 2.1885°S 68.273°E 3.51 30.40 nodal basin
    7.7003°N 38.026°W 5.09 25.89 nodal basin 4.1359°S 68.273°E 3.82 30.78 nodal basin
    8.1688°N 38.013°W 4.62 25.74 nodal basin 8.2246°S 68.281°E 4.36 30.95 nodal high
    33.515°N 37.861°W 3.73 21.65 nodal basin 7.4356°S 68.302°E 3.44 30.63 nodal high
    35.237°N 36.215°W 4.01 21.27 nodal basin 5.0095°S 68.393°E 3.66 31.00 nodal basin
    7.3627°N 36.050°W 4.80 26.00 nodal basin 6.5522°S 68.529°E 4.00 30.17 nodal high
    7.7257°N 36.025°W 4.28 25.89 nodal basin 3.6551°S 68.690°E 3.35 30.78 nodal basin
    52.707°N 35.105°W 3.63 21.73 nodal basin 5.3461°S 68.714°E 4.09 31.14 nodal basin
    35.069°N 35.020°W 4.46 21.27 nodal basin 4.5607°S 68.822°E 3.33 31.00 nodal basin
    7.1854°N 34.674°W 4.58 26.08 nodal basin 22.877°S 69.138°E 3.18 40.99 nodal basin
    7.4386°N 34.657°W 4.39 26.00 nodal basin 22.680°S 69.499°E 3.22 40.99 nodal basin
    7.1685°N 33.910°W 4.07 26.08 nodal basin 33.755°S 77.343°E 3.72 60.26 nodal basin
    3.872°N 32.547°W 4.47 26.96 nodal basin 37.896°S 77.957°E 1.76 62.10 nodal high
    52.540°N 31.765°W 4.09 21.73 nodal basin 38.870°S 78.082°E 2.09 62.70 nodal high
    52.158°N 31.734°W 3.47 21.83 nodal basin 33.175°S 78.128°E 3.01 60.26 nodal high
    3.9058°N 31.572°W 4.69 26.96 nodal basin 35.659°S 78.203°E 3.10 61.41 nodal basin
    52.044°N 30.034°W 3.96 21.83 nodal basin 37.012°S 78.217°E 2.02 62.02 nodal high
    0.78652°N 29.892°W 3.16 27.71 nodal basin 37.664°S 78.267°E 1.77 62.10 nodal high
    1.0271°N 27.714°W 4.56 27.71 nodal basin 38.489°S 78.531°E 2.90 62.70 nodal high
    0.81185°N 27.663°W 4.73 27.77 nodal basin 35.121°S 78.824°E 2.74 61.41 nodal high
    0.92159°N 26.410°W 4.92 27.77 nodal basin 36.391°S 79.148°E 2.90 62.02 nodal basin
    0.66411°N 26.313°W 4.54 27.83 nodal basin 41.889°S 79.944°E 3.20 64.35 nodal basin
    60.912°S 25.490°W 5.70 12.26 nodal basin 41.129°S 80.85°E 3.43 64.35 nodal basin
    0.75697°N 25.481°W 5.02 27.83 nodal basin 43.034°S 83.547°E 3.76 65.60 nodal basin
    0.54593°N 25.456°W 4.42 27.88 nodal basin 40.918°S 85.941°E 3.61 65.60 nodal basin
    0.61768°N 25.004°W 4.12 27.88 nodal basin 42.142°S 88.110°E 2.39 66.47 nodal high
    1.2353°S 24.582°W 4.58 28.27 nodal basin 41.696°S 88.706°E 2.59 66.47 nodal high
    60.798°S 19.601°W 4.94 12.26 nodal basin 46.012°S 95.710°E 3.45 68.69 nodal basin
    60.303°S 19.379°W 4.19 12.80 nodal basin 46.599°S 96.024°E 2.61 68.82 nodal basin
    60.299°S 18.757°W 4.08 12.80 nodal basin 46.278°S 96.271°E 3.23 68.82 nodal basin
    59.186°S 17.984°W 5.33 12.99 nodal basin 45.370°S 96.500°E 3.40 68.69 nodal basin
    35.576°S 17.689°W 3.74 29.60 nodal basin 48.265°S 99.375°E 3.03 69.46 nodal high
    38.430°S 17.069°W 3.12 29.00 nodal high 47.197°S 110.320°E 2.82 69.46 nodal high
    40.380°S 16.875°W 3.12 28.90 nodal basin 49.345°S 116.110°E 3.72 70.11 nodal high
    0.18293°N 16.689°W 3.99 28.27 nodal basin 48.839°S 116.520°E 4.36 70.11 nodal basin
    39.873°S 16.554°W 3.77 28.98 nodal basin 48.876°S 116.660°E 3.42 70.12 nodal basin
    40.291°S 16.449°W 3.54 28.90 nodal basin 48.302°S 117.060°E 2.98 70.12 nodal high
    to be continued
    下载: 导出CSV
    Continued from Table A3
    LatitudeLongitudeDepth
    /km
    Full rate
    /(mm·a–1)
    Nodal high
    /nodal basin
    LatitudeLongitudeDepth
    /km
    Full rate
    /(mm·a–1)
    Nodal high
    /nodal basin
    38.341°S 16.377°W 4.67 29.00 nodal high 50.425°S 114.010°E 3.42 70.35 nodal high
    59.143°S 16.332°W 4.30 12.99 nodal basin 49.832°S 114.400°E 4.43 70.35 nodal basin
    58.452°S 15.950°W 5.82 13.43 nodal basin 50.159°S 120.090°E 4.33 70.19 nodal basin
    39.747°S 15.912°W 3.23 28.98 nodal high 49.289°S 120.490°E 4.10 70.19 nodal basin
    1.5772°S 15.862°W 4.50 28.58 nodal basin 49.363°S 120.780°E 3.94 70.20 nodal basin
    34.247°S 15.229°W 3.94 29.71 nodal basin 48.869°S 121.060°E 4.55 70.20 nodal basin
    35.192°S 15.136°W 3.23 29.60 nodal high 49.715°S 121.440°E 4.74 70.13 nodal basin
    11.906°S 14.988°W 3.65 29.98 nodal basin 49.005°S 121.670°E 4.04 70.13 nodal basin
    33.546°S 14.629°W 3.34 29.70 nodal basin 49.696°S 123.600°E 4.24 69.97 nodal basin
    32.356°S 14.515°W 3.23 29.89 nodal basin 48.808°S 123.990°E 4.36 69.97 nodal basin
    34.124°S 14.503°W 3.73 29.71 nodal basin 49.869°S 125.980°E 4.21 69.76 nodal basin
    14.215°S 14.465°W 3.06 30.02 nodal basin 48.690°S 126.340°E 4.59 69.76 nodal basin
    16.418°S 14.334°W 4.02 30.00 nodal basin 49.949°S 127.150°E 4.18 69.62 nodal basin
    33.491°S 14.321°W 4.00 29.70 nodal basin 48.814°S 127.530°E 4.28 69.62 nodal basin
    17.908°S 14.064°W 3.20 30.28 nodal basin 50.332°S 139.690°E 3.35 67.49 nodal basin
    25.733°S 14.000°W 3.88 30.32 nodal basin 51.899°S 139.750°E 3.25 67.49 nodal high
    26.628°S 13.815°W 3.14 30.15 nodal basin 51.875°S 140.830°E 3.79 67.30 nodal basin
    24.957°S 13.794°W 4.36 30.35 nodal basin 53.985°S 140.980°E 2.96 67.30 nodal high
    29.27°S 13.713°W 3.83 30.13 nodal basin 54.794°S 143.970°E 2.97 66.50 nodal basin
    22.973°S 13.659°W 4.14 30.40 nodal basin 54.263°S 144.220°E 2.87 66.50 nodal basin
    25.666°S 13.616°W 3.98 30.32 nodal basin 54.763°S 146.380°E 2.51 66.05 nodal high
    14.079°S 13.612°W 3.42 30.02 nodal basin 55.719°S 146.630°E 2.23 66.05 nodal basin
    26.561°S 13.587°W 3.51 30.15 nodal basin 55.651°S 147.220°E 2.99 65.82 nodal high
    7.44°S 13.477°W 4.97 29.54 nodal basin 57.527°S 147.710°E 3.11 65.82 nodal basin
    24.822°S 13.333°W 4.09 30.35 nodal basin 57.478°S 148.370°E 2.87 65.51 nodal high
    47.619°S 13.321°W 3.43 27.44 nodal high 58.145°S 148.580°E 2.88 65.51 nodal high
    32.094°S 13.249°W 3.70 29.89 nodal basin 58.033°S 148.950°E 2.67 65.29 nodal high
    16.186°S 13.207°W 3.60 30.00 nodal basin 59.669°S 149.810°E 3.23 65.29 nodal high
    28.304°S 13.203°W 3.97 30.35 nodal basin 59.484°S 150.330°E 3.01 65.29 nodal basin
    0.9145°S 13.160°W 4.94 28.58 nodal basin 60.520°S 150.850°E 3.18 65.29 nodal basin
    28.945°S 13.059°W 3.91 30.19 nodal basin 59.940°S 153.630°E 3.54 64.50 nodal basin
    29.123°S 13.038°W 4.89 30.13 nodal basin 62.939°S 156.270°E 2.26 64.50 nodal high
    下载: 导出CSV
  • [1] Baines A G, Cheadle M J, Dick H J B, et al. 2003. Mechanism for generating the anomalous uplift of oceanic core complexes: Atlantis Bank, Southwest Indian Ridge. Geology, 31(12): 1105–1108. doi: 10.1130/G19829.1
    [2] Behn M D, Lin J, Zuber M T. 2002. Evidence for weak oceanic transform faults. Geophysical Research Letters, 29(24): 2207. doi: 10.1029/2002GL015612
    [3] Bird P, Kagan Y Y, Jackson D D. 2002. Plate tectonics and earthquake potential of spreading ridges and oceanic transform faults. In: Stein S, Freymueller J T, eds. Plate Boundary Zones. Washington, DC: Geodynamics Series, 203–218
    [4] Boettcher M S, Jordan T H. 2004. Earthquake scaling relations for mid-ocean ridge transform faults. Journal of Geophysical Research: Solid Earth, 109(B12): B12302. doi: 10.1029/2004JB003110
    [5] Bonatti E, Ligi M, Gasperini L, et al. 1994. Transform migration and vertical tectonics at the Romanche fracture zone, equatorial Atlantic. Journal of Geophysical Research: Solid Earth, 99(B11): 21779–21802. doi: 10.1029/94JB01178
    [6] Chen Y S, Morgan W J. 1990. Rift valley/no rift valley transition at mid-ocean ridges. Journal of Geophysical Research: Solid Earth, 95(B11): 17571–17581. doi: 10.1029/JB095iB11p17571
    [7] Croon M B, Cande S C, Stock J M. 2008. Revised pacific-Antarctic plate motions and geophysics of the Menard fracture zone. Geochemistry, Geophysics, Geosystems, 9(7): Q07001. doi: 10.1029/2008GC002019
    [8] Dick H, Lin J, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405–412. doi: 10.1038/nature02128
    [9] Dziewonski A M, Anderson D L. 1981. Preliminary reference Earth model. Physics of the Earth and Planetary Interiors, 25(4): 297–356. doi: 10.1016/0031-9201(81)90046-7
    [10] Ekström G, Nettles M, Dziewoński A M. 2012. The global CMT project 2004–2010 : Centroid-moment tensors for 13, 017 earthquakes. Physics of the Earth and Planetary Interiors, 200–201: 1–9. doi: 10.1016/j.pepi.2012.04.002
    [11] Embley R W, Wilson D S. 1992. Morphology of the Blanco transform fault zone-NE Pacific: implications for its tectonic evolution. Marine Geophysical Researches, 14(1): 25–45. doi: 10.1007/BF01674064
    [12] Fornari D J, Gallo D G, Edwards M H, et al. 1989. Structure and topography of the Siqueiros transform fault system: Evidence for the development of intra-transform spreading centers. Marine Geophysical Researches, 11(4): 263–299. doi: 10.1007/BF00282579
    [13] Fox P J, Gallo D G. 1984. A tectonic model for ridge-transform-ridge plate boundaries: Implications for the structure of oceanic lithosphere. Tectonophysics, 104(3–4): 205–242. doi: 10.1016/0040-1951(84)90124-0
    [14] Georgen J E, Lin J, Dick H J B. 2001. Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: Effects of transform offsets. Earth and Planetary Science Letters, 187(3–4): 283–300. doi: 10.1016/S0012-821X(01)00293-X
    [15] Gregg P M, Lin J, Smith D K. 2006. Segmentation of transform systems on the East Pacific Rise: Implications for earthquake processes at fast-slipping oceanic transform faults. Geology, 34(4): 289–292. doi: 10.1130/G22212.1
    [16] Gregg P M, Lin J, Behn M D, et al. 2007. Spreading rate dependence of gravity anomalies along oceanic transform faults. Nature, 448(7150): 183–187. doi: 10.1038/nature05962
    [17] Kanamori H. 1977. The energy release in great earthquakes. Journal of Geophysical Research, 82(20): 2981–2987. doi: 10.1029/JB082i020p02981
    [18] Karson J A, Dick H J B. 1983. Tectonics of ridge-transform intersections at the Kane fracture zone. Marine Geophysical Research, 6(1): 51–98. doi: 10.1007/BF00300398
    [19] Kreemer C, Haines J, Holt W E, et al. 2000. On the determination of a global strain rate model. Earth, Planets and Space, 52(10): 765–770. doi: 10.1186/BF03352279
    [20] Ligi M, Bonatti E, Gasperini L, et al. 2002. Oceanic broad multifault transform plate boundaries. Geology, 30(1): 11–14. doi: 10.1130/0091-7613(2002)030<0011:OBMTPB>2.0.CO;2
    [21] Lin J, Parmentier E M. 1989. Mechanisms of lithospheric extension at mid-ocean ridges. Geophysical Journal International, 96(1): 1–22. doi: 10.1111/j.1365-246X.1989.tb05246.x
    [22] Lin J, Purdy G M, Schouten H, et al. 1990. Evidence from gravity data for focusedmagmatic accretion along the Mid-Atlantic Ridge. Nature, 344: 627–632. doi: 10.1038/344627a0
    [23] Lin J, Morgan J P. 1992. The spreading rate dependence of three-dimensional mid-ocean ridge gravity structure. Geophysical Research Letters, 19(1): 13–16. doi: 10.1029/91GL03041
    [24] Livermore R A, Tomlinson J S, Woollett R W. 1991. Unusual sea-floor fabric near the Bullard fracture zone imaged by GLORIA sidescan sonar. Nature, 353(6340): 158–161. doi: 10.1038/353158a0
    [25] Lonsdale P. 1994. Structural geomorphology of the Eltanin fault system and adjacent transform faults of the Pacific-Antarctic plate boundary. Marine Geophysical Researches, 16(2): 105–143. doi: 10.1007/BF01224756
    [26] Macdonald K C. 1982. Mid-ocean ridges: Fine scale tectonic, volcanic and hydrothermal processes within the plate boundary zone. Annual Review of Earth and Planetary Sciences, 10: 155–190. doi: 10.1146/annurev.ea.10.050182.001103
    [27] Magde L S, Detrick R S. 1995. Crustal and upper mantle contribution to the axial gravity anomaly at the southern East Pacific Rise. Journal of Geophysical Research: Solid Earth, 100(B3): 3747–3766. doi: 10.1029/94JB02869
    [28] Maia M. 2019. Topographic and morphologic evidences of deformation at oceanic transform faults: Far-field and local-field stresses. In: Duarte J C, ed. Transform Plate Boundaries and Fracture Zones. Amsterdam: Elsevier, 61–87, doi: 10.1016/B978-0-12-812064-4.00003-7
    [29] Morgan J P, Parmentier E M. 1984. Lithospheric stress near a ridge-transform intersection. Geophysical Research Letters, 11(2): 113–116. doi: 10.1029/GL011i002p00113
    [30] Perfit M R, Fornari D J, Ridley W I, et al. 1996. Recent volcanism in the Siqueiros transform fault: Picritic basalts and implications for MORB magma genesis. Earth and Planetary Science Letters, 141(1–4): 91–108. doi: 10.1016/0012-821X(96)00052-0
    [31] Pockalny R A, Detrick R S, Fox P J. 1988. Morphology and tectonics of the Kane transform from Sea Beam bathymetry data. Journal of Geophysical Research: Solid Earth, 93(B4): 3179–3193. doi: 10.1029/JB093iB04p03179
    [32] Pockalny R A, Fox P J, Fornari D J, et al. 1997. Tectonic reconstruction of the Clipperton and Siqueiros Fracture Zones: Evidence and consequences of plate motion change for the last 3 Myr. Journal of Geophysical Research: Solid Earth, 102(B2): 3167–3181. doi: 10.1029/96JB03391
    [33] Roland E, Behn M D, Hirth G. 2010. Thermal-mechanical behavior of oceanic transform faults: Implications for the spatial distribution of seismicity. Geochemistry, Geophysics, Geosystems, 11(7): Q07001. doi: 10.1029/2010GC003034
    [34] Royden L H, Horváth F, Burchfiel B C. 1982. Transform faulting, extension, and subduction in the Carpathian Pannonian region. GSA Bulletin, 93(8): 717–725. doi: 10.1130/0016-7606(1982)93<717:TFEASI>2.0.CO;2
    [35] Sandwell D T, Müller R D, Smith W H F, et al. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205): 65–67. doi: 10.1126/science.1258213
    [36] Sclater J G, Grindlay N R, Madsen J A, et al. 2005. Tectonic interpretation of the Andrew Bain transform fault: Southwest Indian Ocean. Geochemistry, Geophysics, Geosystems, 6(9): Q09K10. doi: 10.1029/2005GC000951
    [37] Searle R C. 1983. Multiple, closely spaced transform faults in fast-slipping fracture zones. Geology, 11(10): 607–610. doi: 10.1130/0091-7613(1983)11<607:MCSTFI>2.0.CO;2
    [38] Searle R C, Thomas M V, Jones E J W. 1994. Morphology and tectonics of the Romanche Transform and its environs. Marine Geophysical Researches, 16(6): 427–453. doi: 10.1007/bf01270518
    [39] Sempéré J C, Lin J, Brown H S, et al. 1993. Segmentation and morphotectonic variations along a slow-spreading center: The Mid-Atlantic Ridge (24°00′N–30°40′N). Marine Geophysical Researches, 15(3): 153–200. doi: 10.1007/BF01204232
    [40] Shaw W J, Lin J. 1996. Models of ocean ridge lithospheric deformation: Dependence on crustal thickness, spreading rate, and segmentation. Journal of Geophysical Research: Solid Earth, 101(B8): 17977–17993. doi: 10.1029/96JB00949
    [41] Sleep N H. 1969. Sensitivity of heat flow and gravity to the mechanism of sea-floor spreading. Journal of Geophysical Research, 74(2): 542–549. doi: 10.1029/JB074i002p00542
    [42] Sleep N H, Biehler S. 1970. Topography and tectonics at the intersections of fracture zones with central rifts. Journal of Geophysical Research, 75(14): 2748–2752. doi: 10.1029/JB075i014p02748
    [43] Tapponnier P, Francheteau J. 1978. Necking of the lithosphere and the mechanics of slowly accreting plate boundaries. Journal of Geophysical Research: Solid Earth, 83(B8): 3955–3970. doi: 10.1029/JB083iB08p03955
    [44] Tozer B, Sandwell D T, Smith W H F, et al. 2019. Global bathymetry and topography at 15 arc sec: SRTM15+. Earth and Space Science, 6(10): 1847–1864. doi: 10.1029/2019EA000658
    [45] Tucholke B E, Lin J. 1994. A geological model for the structure of ridge segments in slow spreading ocean crust. Journal of Geophysical Research: Solid Earth, 99(B6): 11937–11958. doi: 10.1029/94JB00338
    [46] Tucholke B E, Schouten H. 1988. Kane fracture zone. Marine Geophysical Researches, 10(1–2): 1–39. doi: 10.1007/BF02424659
    [47] Turcotte D L, Schubert G. 2014. Geodynamics. 3rd ed. Cambridge, United Kingdom: Cambridge University Press, 636
    [48] Wei M. 2019. Seismic behavior on oceanic transform faults at the East Pacific Rise. In Duarte J C, ed. Transform Plate Boundaries and Fracture Zones. Amsterdam: Elsevier, 119–143, doi: 10.1016/B978-0-12-812064-4.00006-2
    [49] Wilson J T. 1965. A new class of faults and their bearing on continental drift. Nature, 207(4995): 343–347. doi: 10.1038/207343a0
    [50] Wolfson-Schwehr M. 2015. The relationship between oceanic transform fault segmentation, seismicity, and thermal structure [dissertation]. Durham: University of New Hampshire, https://scholars.unh.edu/dissertation/2233
    [51] Wolfson-Schwehr M, Boettcher M S. 2019. Global characteristics of oceanic transform fault structure and seismicity. In: Duarte J C, ed. Transform Plate Boundaries and Fracture Zones. Amsterdam: Elsevier, 21–59, doi: 10.1016/B978-0-12-812064-4.00002-5
    [52] Zhang Tao, Lin Jian, Gao Jinyao. 2020. Asymmetric crustal structure of the ultraslow-spreading Mohns Ridge. International Geology Review, 62(5): 568–584. doi: 10.1080/00206814.2019.1627586
  • 加载中
图(18) / 表(14)
计量
  • 文章访问数:  1173
  • HTML全文浏览量:  415
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-28
  • 录用日期:  2020-06-29
  • 网络出版日期:  2021-05-06
  • 刊出日期:  2021-06-03

目录

    /

    返回文章
    返回