Statistical characteristics and thermohaline properties of mesoscale eddies in the Bay of Bengal

Wei Cui Chaojie Zhou Jie Zhang Jungang Yang

Wei Cui, Chaojie Zhou, Jie Zhang, Jungang Yang. Statistical characteristics and thermohaline properties of mesoscale eddies in the Bay of Bengal[J]. Acta Oceanologica Sinica, 2021, 40(4): 10-22. doi: 10.1007/s13131-021-1723-4
Citation: Wei Cui, Chaojie Zhou, Jie Zhang, Jungang Yang. Statistical characteristics and thermohaline properties of mesoscale eddies in the Bay of Bengal[J]. Acta Oceanologica Sinica, 2021, 40(4): 10-22. doi: 10.1007/s13131-021-1723-4

doi: 10.1007/s13131-021-1723-4

Statistical characteristics and thermohaline properties of mesoscale eddies in the Bay of Bengal

Funds: The National Key Research and Development Program of China under contract No. 2016YFC1401800; the Basic Scientific Fund for National Public Research Institutes of China under contract No. 2020Q07; the National Natural Science Foundation of China under contract No. 41576176; the Dragon 4 Project under contract No. 32292; the National Programme on Global Change and Air-Sea Interaction under contract Nos GASI-02-PAC-YGST2-04, GASI-02-IND-YGST2-04 and GASI-02-SCS-YGST2-04.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The northward (a) and southward (b) propagation trajectories of the cyclonic (blue lines) and anticyclonic (red lines) eddies with lifetimes≥60 d.

    Figure  4.  Mean potential temperature and salinity (θ-S) diagram calculated at different latitudes (color lines) based on all Argo profiles in the Bay of Bengal. Gray contours denote potential density σ (kg/m3), and the black dotted line is the mean θ-S profile in the whole bay (4°–20°N, 80°–94°E).

    Figure  2.  Evolution of eddy kinetic properties with the lifetime. a–c. The changes of eddy kinetic properties during the evolution of eddies with different lifetimes. The eddies with different lifetimes are divided into five categories: [30, 60) d, [60, 90) d, [90, 120) d, [120, 150) d, and langer than 150 d (the numbers of cyclonic and anticyclonnic eddies are: 348 and 284, 122 and 131, 54 and 47, 20 and 22, 39 and 22, respectively). Here cyclonic and anticyclonic eddies are considered together, and the eddy lifetime has been normalized. d–f. The normalized relative properties of all cyclonic (blue line) and anticyclonic (red line) eddies with lifetime≥30 d evolve with the normalized lifetime.

    Figure  3.  Census statistics for numbers (a and b) of cyclonic (CEs) and anticyclonic (AEs) eddies and their polarity distribution (c) for each 1°×1° region (smoothed using a 3°×3° window), the maps of the mean amplitude (d and e), radius (g and h), and EKE (j and k) of CEs and AEs, and their variations with latitude (f, i, and l). The red and blue lines in f, i and l represent the mean zonal properties of CEs and AEs, respectively; and the black lines represent the mean zonal properties and standard deviations of all eddies.

    Figure  5.  Mean vertical diagrams of potential temperature anomaly θ′ (a) and salinity anomaly S′ (d) from Argo profiles as a function of depth inside eddies and outside eddies, mean vertical sections of the potential temperature anomaly θ′ (b and c), and salinity anomaly S′ (e and f) of the composite cyclonic and anticyclonic eddies at section Δy=0 in the Bay of Bengal (4°–20°N, 80°–94°E), the dashed line indicates the depth of the max θ′ and S′. In a and d, the dashed curves indicate the value of the Argo profiles inside eddies minus the CARS climatology, and the green solid curves indicate the mean anomalies that were computed from Argo profiles outside eddies relative to the CARS climatology; the blue and red solid curves correspond to dashed curves that removed the mean anomaly (green solid curves); the shading indicates one standard deviation value range.

    Figure  6.  The potential temperature anomaly θ′ (upper panels) and the salinity anomaly S′ (bottom panels) of cyclonic (a and d), anticyclonic (b and e) eddies and outside eddies (c and f) at different longitudes. θ′ and S′ in the eddy removed the Argo-CARS system deviation of its corresponding longitude.

    Figure  7.  The potential temperature anomaly θ′ (upper panels) and the salinity anomaly S′ (bottom panels) of cyclonic (a and d), anticyclonic (b and e) eddies and outside eddies (c and f) at different longitudes. θ′ and S′ in the eddy removed the Argo-CARS systemdeviation of its corresponding latitudes.

    Table  1.   The number of southward and northward eddies with different lifetimes, and their proportion (southward/northward)

    Lifetime≥30 dLifetime≥60 dLifetime≥90 dLifetime≥120 d
    Southward586 (CE: 307; AE: 279)281(CE: 147; AE: 134)136(CE: 78; AE: 58)77 (CE: 46; AE: 31)
    Northward 503(CE: 276; AE: 227)176 (CE: 88; AE: 88) 68 (CE: 35; AE: 33)26(CE: 13; AE: 13)
    Proportion 54:46(CE: 53:47; AE: 55:45) 61:39 (CE: 63:37; AE: 60:40) 67:33 (CE: 69:31; AE: 64:36) 75:25 (CE: 78:22; AE: 70:30)
    Note: Bold numbers represent all eddies; CE and AE mean cyclonic and anticyclonic eddies, respectively.
    下载: 导出CSV

    Table  2.   Average kinetic properties of eddies with lifetimes≥30 d in the Bay of Bengal

    AM/cmR/kmEKE/(cm2·s–2)Umax/(cm·s–1)
    Cyclones9.701164.70×10441.5
    Anticyclones9.001223.78×10436.4
    下载: 导出CSV
  • [1] Amores A, Melnichenko O, Maximenko N. 2017. Coherent mesoscale eddies in the North Atlantic subtropical gyre: 3-D structure and transport with application to the salinity maximum. Journal of Geophysical Research: Oceans, 122(1): 23–41. doi: 10.1002/2016JC012256
    [2] Babu M T, Kumar P S, Rao D P. 1991. A subsurface cyclonic eddy in the Bay of Bengal. Journal of Marine Research, 49(3): 403–410. doi: 10.1357/002224091784995846
    [3] Babu M T, Sarma Y V B, Murty V S N, et al. 2003. On the circulation in the Bay of Bengal during northern spring inter-monsoon (March–April 1987). Deep Sea Research Part II: Topical Studies in Oceanography, 50(5): 855–865. doi: 10.1016/S0967-0645(02)00609-4
    [4] Chaigneau A, Gizolme A, Grados C. 2008. Mesoscale eddies off Peru in altimeter records: identification algorithms and eddy spatio-temporal patterns. Progress in Oceanography, 79(2–4): 106–119
    [5] Chaigneau A, Le Texier M, Eldin G, et al. 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. Journal of Geophysical Research: Oceans, 116(C11): C11025. doi: 10.1029/2011JC007134
    [6] Chelton D B, Gaube P, Schlax M G, et al. 2011a. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054): 328–332. doi: 10.1126/science.1208897
    [7] Chelton D B, Schlax M G, Samelson R M. 2011b. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2): 167–216. doi: 10.1016/j.pocean.2011.01.002
    [8] Chen Gengxin, Han Weiqing, Li Yuanlong, et al. 2017. Strong intraseasonal variability of meridional currents near 5°N in the Eastern Indian Ocean: Characteristics and causes. Journal of Physical Oceanography, 47(5): 979–998. doi: 10.1175/JPO-D-16-0250.1
    [9] Chen Gengxin, Li Yuanlong, Xie Qiang, et al. 2018. Origins of eddy kinetic energy in the Bay of Bengal. Journal of Geophysical Research: Oceans, 123(3): 2097–2115. doi: 10.1002/2017JC013455
    [10] Chen Gengxin, Wang Dongxiao, Hou Yijun. 2012. The features and interannual variability mechanism of mesoscale eddies in the Bay of Bengal. Continental Shelf Research, 47: 178–185. doi: 10.1016/j.csr.2012.07.011
    [11] Cheng Xuhua, McCreary J P, Qiu Bo, et al. 2018. Dynamics of eddy generation in the central Bay of Bengal. Journal of Geophysical Research: Oceans, 123(9): 6861–6875. doi: 10.1029/2018JC014100
    [12] Cheng Xuhua, Xie Shangping, McCreary J P, et al. 2013. Intraseasonal variability of sea surface height in the Bay of Bengal. Journal of Geophysical Research: Oceans, 118(2): 816–830. doi: 10.1002/jgrc.20075
    [13] Cui Wei, Wang Wei, Ma Yi, et al. 2017. Identification and analysis of mesoscale eddies in the Northwestern Pacific Ocean from 1993–2014 based on altimetry data. Haiyang Xuebao (in Chinese), 39(2): 16–28. doi: 10.3969/j.issn.0253-4193.2017.02.002
    [14] Cui Wei, Wang Wei, Zhang Jie, et al. 2019. Multicore structures and the splitting and merging of eddies in global oceans from satellite altimeter data. Ocean Science, 15(2): 413–430. doi: 10.5194/os-15-413-2019
    [15] Cui Wei, Yang Jungang, Ma Yi. 2016. A statistical analysis of mesoscale eddies in the Bay of Bengal from 22–year altimetry data. Acta Oceanologica Sinica, 35(11): 16–27. doi: 10.1007/s13131-016-0945-3
    [16] Dandapat S, Chakraborty A. 2016. Mesoscale eddies in the Western Bay of Bengal as observed from satellite altimetry in 1993–2014: statistical characteristics, variability and three-dimensional properties. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(11): 5044–5054. doi: 10.1109/JSTARS.2016.2585179
    [17] Dong Di, Brandt P, Chang Ping, et al. 2017. Mesoscale eddies in the northwestern Pacific Ocean: Three-dimensional eddy structures and heat/salt transports. Journal of Geophysical Research: Oceans, 122(12): 9795–9813. doi: 10.1002/2017JC013303
    [18] Dong Changming, McWilliams J C, Liu Yu, et al. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5: 3294. doi: 10.1038/ncomms4294
    [19] Eigenheer A, Quadfasel D. 2000. Seasonal variability of the Bay of Bengal circulation inferred from TOPEX/Poseidon altimetry. Journal of Geophysical Research: Oceans, 105(C2): 3243–3252. doi: 10.1029/1999JC900291
    [20] Emery W J, Meincke J. 1986. Global water masses: Summary and review. Oceanologica Acta, 9(4): 383–391
    [21] Fu L L. 2009. Pattern and velocity of propagation of the global ocean eddy variability. Journal of Geophysical Research: Oceans, 114(C11): C11017. doi: 10.1029/2009JC005349
    [22] Gonaduwage L P, Chen Gengxin, McPhaden M J, et al. 2019. Meridional and zonal eddy-induced heat and salt transport in the Bay of Bengal and their seasonal modulation. Journal of Geophysical Research: Oceans, 124(11): 8079–8101. doi: 10.1029/2019JC015124
    [23] Gulakaram V S, Vissa N K, Bhaskaran P K. 2020. Characteristics and vertical structure of Oceanic mesoscale eddies in the Bay of Bengal. Dynamics of Atmospheres and Oceans, 89: 101131. doi: 10.1016/j.dynatmoce.2020.101131
    [24] Hacker P, Firing E, Hummon J, et al. 1998. Bay of Bengal currents during the northeast monsoon. Geophysical Research Letters, 25(15): 2769–2772. doi: 10.1029/98GL52115
    [25] Henson S A, Thomas A C. 2008. A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep Sea Research Part I: Oceanographic Research Papers, 55(2): 163–176. doi: 10.1016/j.dsr.2007.11.005
    [26] Hu Dong, Chen Xi, Mao Kefeng, et al. 2017. Statistical characteristics and composed three dimensional structures of mesoscale eddies in the South Indian Ocean. Haiyang Xuebao (in Chinese), 39(9): 1–14. doi: 10.3969/j.issn.0253-4193.2017.09.001
    [27] Kumar B, Chakraborty A. 2011. Movement of seasonal eddies and its relation with cyclonic heat potential and cyclogenesis points in the Bay of Bengal. Natural Hazards, 59(3): 1671–1689. doi: 10.1007/s11069-011-9858-9
    [28] Le Traon P Y, Faugère Y, Hernandez F, et al. 2003. Can we merge GEOSAT follow-on with TOPEX/Poseidon and ERS-2 for an improved description of the ocean circulation?. Journal of Atmospheric and Oceanic Technology, 20(6): 889–895. doi: 10.1175/1520-0426(2003)020<0889:CWMGFW>2.0.CO;2
    [29] Legeckis R. 1987. Satellite observations of a western boundary current in the Bay of Bengal. Journal of Geophysical Research: Oceans, 92(C12): 12974–12978. doi: 10.1029/JC092iC12p12974
    [30] Lin Xingyu, Qiu Yun, Sun Dezheng. 2019. Thermohaline structures and heat/freshwater transports of mesoscale eddies in the bay of Bengal observed by Argo and satellite data. Remote Sensing, 11(24): 2989. doi: 10.3390/rs11242989
    [31] Liu Yu, Dong Changming, Guan Yuping, et al. 2012. Eddy analysis in the subtropical zonal band of the North Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers, 68: 54–67. doi: 10.1016/j.dsr.2012.06.001
    [32] Lou Hao, Bracco A, Di Lorenzo E. 2011. The interannual variability of the surface eddy kinetic energy in the Labrador Sea. Progress in Oceanography, 91(3): 295–311. doi: 10.1016/j.pocean.2011.01.006
    [33] Nencioli F, Dong Changming, Dickey T, et al. 2010. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. Journal of Atmospheric and Oceanic Technology, 27(3): 564–579. doi: 10.1175/2009JTECHO725.1
    [34] Nuncio M, Kumar S P. 2012. Life cycle of eddies along the western boundary of the Bay of Bengal and their implications. Journal of Marine Systems, 94: 9–17. doi: 10.1016/j.jmarsys.2011.10.002
    [35] Pascual A, Faugère Y, Larnicol G, et al. 2006. Improved description of the ocean mesoscale variability by combining four satellite altimeters. Geophysical Research Letters, 33(2): L02611
    [36] Patnaik K V K R K, Maneesha K, Sadhuram Y, et al. 2014. East India Coastal Current induced eddies and their interaction with tropical storms over Bay of Bengal. Journal of Operational Oceanography, 7(1): 58–68. doi: 10.1080/1755876X.2014.11020153
    [37] Robinson I S. 2010. Mesoscale ocean features: eddies. In: Robinson I S, ed. Discovering the Ocean from Space. Berlin: Springer, 2010
    [38] Sardessai S, Shetye S, Maya M V, et al. 2010. Nutrient characteristics of the water masses and their seasonal variability in the eastern equatorial Indian Ocean. Marine Environmental Research, 70(3–4): 272–282
    [39] Sarma Y V B, Rao E P R, Saji P K, et al. 1999. Hydrography and circulation of the Bay of Bengal during withdrawal phase of the southwest monsoon. Oceanologica Acta, 22(5): 453–471. doi: 10.1016/S0399-1784(00)87680-X
    [40] Schott F A, McCreary Jr J P. 2001. The monsoon circulation of the Indian Ocean. Progress in Oceanography, 51(1): 1–123. doi: 10.1016/S0079-6611(01)00083-0
    [41] Somayajulu Y K, Murty V S N, Sarma Y V B. 2003. Seasonal and inter-annual variability of surface circulation in the Bay of Bengal from TOPEX/Poseidon altimetry. Deep Sea Research Part II: Topical Studies in Oceanography, 50(5): 867–880. doi: 10.1016/S0967-0645(02)00610-0
    [42] Souza J M A C, De Boyer Montégut C, Le Traon P Y. 2011. Comparison between three implementations of automatic identification algorithms for the quantification and characterization of mesoscale eddies in the South Atlantic Ocean. Ocean Science, 7(3): 317–334. doi: 10.5194/os-7-317-2011
    [43] Stramma L, Fischer J, Schott F. 1996. The flow field off southwest India at 8N during the southwest monsoon of August 1993. Journal of Marine Research, 54(1): 55–72. doi: 10.1357/0022240963213448
    [44] Thompson A F, Heywood K J, Schmidtko S, et al. 2014. Eddy transport as a key component of the Antarctic overturning circulation. Nature Geoscience, 7(12): 879–884. doi: 10.1038/ngeo2289
    [45] Traon P Y, Dibarboure G. 2004. An illustration of the contribution of the TOPEX/Poseidon—Jason-1 tandem mission to mesoscale variability studies. Marine Geodesy, 27(1–2): 3–13
    [46] Vinayachandran P N, Masumoto Y, Mikawa T, et al. 1999. Intrusion of the southwest monsoon current into the Bay of Bengal. Journal of Geophysical Research: Oceans, 104(C5): 11077–11085. doi: 10.1029/1999JC900035
    [47] Xu Chi, Shang Xiaodong, Huang Ruixin. 2011. Estimate of eddy energy generation/dissipation rate in the world ocean from altimetry data. Ocean Dynamics, 61(4): 525–541. doi: 10.1007/s10236-011-0377-8
    [48] Yang Guang, Wang Fan, Li Yuanlong, et al. 2013. Mesoscale eddies in the northwestern subtropical pacific ocean: statistical characteristics and three-dimensional structures. Journal of Geophysical Research: Oceans, 118(4): 1906–1925. doi: 10.1002/jgrc.20164
    [49] Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6: 24349. doi: 10.1038/srep24349
    [50] Zhang Zhengguang, Wang Wei, Qiu Bo. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194): 322–324. doi: 10.1126/science.1252418
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  1081
  • HTML全文浏览量:  316
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-08
  • 录用日期:  2020-06-22
  • 网络出版日期:  2021-05-06
  • 刊出日期:  2021-06-03

目录

    /

    返回文章
    返回