Forward modeling and inversion of the relation model between the gas content of plume and its seismic attribute

Canping Li Jiachun You Yanchun Tan Fengying Chen Yilin Liu Zihao Guo Xinyu Tian

Canping Li, Jiachun You, Yanchun Tan, Fengying Chen, Yilin Liu, Zihao Guo, Xinyu Tian. Forward modeling and inversion of the relation model between the gas content of plume and its seismic attribute[J]. Acta Oceanologica Sinica, 2021, 40(5): 120-128. doi: 10.1007/s13131-021-1737-y
Citation: Canping Li, Jiachun You, Yanchun Tan, Fengying Chen, Yilin Liu, Zihao Guo, Xinyu Tian. Forward modeling and inversion of the relation model between the gas content of plume and its seismic attribute[J]. Acta Oceanologica Sinica, 2021, 40(5): 120-128. doi: 10.1007/s13131-021-1737-y

doi: 10.1007/s13131-021-1737-y

Forward modeling and inversion of the relation model between the gas content of plume and its seismic attribute

Funds: The Innovation and Enhancing School Project of Guangdong Ocean University under contract No. 230419096; the Joint Research on Exploration and Development Technology of Natural Gas Hydrate under contract No. 2018YFE0208200; the Teaching Team Project of Guangdong Ocean University under contract No. 570220033; the National Natural Science Fundation of China under contract Nos 42004103 and 41306050; the Fund of Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang) under contract No. ZJW-2019-08.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Bubble plume in cold seepage in the Okhotsk Sea (Luan et al., 2010).

    Figure  2.  Bubble plume (a) and seismic migration section (b) in the survey area in the South China Sea (You et al., 2015). BSR: bottom simulating reflector, CDP: common depth point, SEQNO: sequence number.

    Figure  3.  Model of the velocity of the plume (You et al., 2015).

    Figure  4.  The spectrum of seismic section in Fig. 2a. a. The spectrum of trace-gather; b. the spectrum of shot-gather.

    Figure  5.  Migration section of the plume model with a background gas content of 10%–15%–10% (You et al., 2015).

    Figure  6.  Correlation between gas content and amplitude attribute of Formation 1.

    Figure  7.  Correlation between gas content and amplitude attribute of Formation 2.

    Figure  8.  Correlation between gas content and amplitude attribute of Formation 3.

    Figure  9.  Overall fitting relation between gas content and amplitude attribute.

    Figure  10.  Plume section of a certain survey area in the South China Sea. CDP: common depth point.

    Figure  11.  Three sections of the amplitude attribute. a. RMS amplitude; b. average absolute amplitude; c. absolute amplitude integration.

    Figure  12.  Gas content sections inverted by the amplitude attributes. a. Gas content section inverted by the RMS amplitude attribute; b. gas content section inverted by the average absolute amplitude attribute; c. gas content section inverted by the absolute amplitude integration attribute. CDP: common depth point.

    Table  1.   Gas content of three formations of five models

    ModelFormation 1Formation 2Formation 3
    m10.0180.050.030
    m20.0600.100.076
    m30.1100.150.120
    m40.1600.200.176
    m50.2100.250.226
    下载: 导出CSV

    Table  2.   Correlation coefficients between gas content and amplitude attributes of three formations

    Amplitude attributesFormation 1Formation 2Formation 3
    RMS amplitude0.989 30.997 40.980 7
    Average absolute amplitude0.977 30.994 70.985 8
    Absolute amplitude integration0.977 30.994 70.985 8
    下载: 导出CSV

    Table  3.   Relation models between the gas content and amplitude attributes of three formations

    Amplitude attributeFormation 1Formation 2Formation 3
    RMS amplitudey11=0.0628x11+2.5×10–4y21=0.0435x21+1.2×10–3y31=0.0444x31+5.9×10–4
    Average absolute amplitudey12=0.0252x12+6.7×10–4y22=0.0191x22+1.6×10–3y32=0.0228x32+8.0×10–4
    Absolute amplitude integrationy13=25.2x13+0.67y23=19.1x23+1.6y33=22.8x33+0.8
    下载: 导出CSV

    Table  4.   Correlation coefficients between gas content and amplitude attribute

    Amplitude attributesRMS amplitudeAverage absolute amplitudeAbsolute amplitude integration
    Correlation coefficients0.949 50.977 70.977 7
    下载: 导出CSV
  • [1] Brown A R. 1996. Seismic attributes and their classification. The Leading Edge, 15(10): 1090. doi: 10.1190/1.1437208
    [2] Charlou J L, Donval J P, Zitter T, et al. 2003. Evidence of methane venting and geochemistry of brines on mud volcanoes of the eastern Mediterranean Sea. Deep Sea Research Part I: Oceanographic Research Papers, 50(8): 941–958. doi: 10.1016/s0967-0637(03)00093-1
    [3] Chen Yilan, Ding Jisheng, Zhang Haiquan, et al. 2019. Multibeam water column data research in the Taixinan Basin: implications for the potential occurrence of natural gas hydrate. Acta Oceanologica Sinica, 38(5): 129–133. doi: 10.1007/s13131-019-1444-0
    [4] Chen Q, Sidney S. 1997. Seismic attribute technology for reservoir forecasting and monitoring. The Leading Edge, 16(5): 445–450. doi: 10.1190/1.1437657
    [5] Chen Jiangxin, Tong Siyou, Han Tonggang, et al. 2020. Modelling and detection of submarine bubble plumes using seismic oceanography. Journal of Marine Systems, 209: 103375. doi: 10.1016/j.jmarsys.2020.103375
    [6] Di Pengfei, Feng Dong, Gao Libao, et al. 2008. In situ measurement of fluid flow and signatures of seep activity at marine seep sites. Progress in Geophysics (in Chinese), 23(5): 1592–1602
    [7] Duan Peiran, Luan Xiwu, Yu Yi, et al. 2020. Numerical simulation of seismic waves of bubble plumes in submarine cold seepages. Chinese Journal of Geophysics (in Chinese), 63(2): 753–765. doi: 10.6038/cjg2020M0533
    [8] Freire A F M, Matsumoto R, Santos L A. 2011. Structural-stratigraphic control on the Umitaka Spur gas hydrates of Joetsu Basin in the eastern margin of Japan Sea. Marine and Petroleum Geology, 28(10): 1967–1978. doi: 10.1016/j.marpetgeo.2010.10.004
    [9] Fu Chao, Li Shengli, Yu Xinghe, et al. 2019. Patterns of gas hydrate accumulation in mass transport deposits related to canyon activity: example from Shenhu drilling area in the South China Sea. Acta Oceanologica Sinica, 38(5): 118–128. doi: 10.1007/s13131-019-1443-1
    [10] Matsumoto R, Gong Jianming. 2006. Methane plumes over a marine gas hydrate system in the eastern margin of the Sea of Japan: a proposed mechanism for the transport of significant subsurface methane to shallow waters. Marine Geology Letters (in Chinese), 22(5): 33. doi: 10.16028/j.1009-2722.2006.05.009
    [11] Greinert J, Artemov Y, Egorov V, et al. 2006. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: hydroacoustic characteristics and temporal variability. Earth and Planetary Science Letters, 244(1–2): 1–15. doi: 10.1016/j.jpgl.2006.02.011
    [12] Heeschen K U, Tréhu A M, Collier R W, et al. 2003. Distribution and height of methane bubble plumes on the Cascadia Margin characterized by acoustic imaging. Geophysical Researcher Letters, 30(12): 1643. doi: 10.1029/2003gl016974
    [13] Korn M. 1993. Seismic waves in random media. Journal of Applied Geophysics, 29(3–4): 247–269. doi: 10.1016/0926-9851(93)90007-L
    [14] Li Canping, Gou Limin, You Jiachun, et al. 2016. Further studies on the numerical simulation of bubble plumes in the cold seepage active region. Acta Oceanologica Sinica, 35(1): 118–124. doi: 10.1007/s13131-016-0803-3
    [15] Li Canping, Gou Limin, You Jiachun. 2017. Numerical simulation of bubble plumes and an analysis of their seismic attributes. Journal of Ocean University of China, 16(2): 223–232. doi: 10.1007/s11802-017-3069-2
    [16] Li Canping, Liu Xuewei, Gou Limin, et al. 2013. Numerical simulation of bubble plumes in overlying water of gas hydrate in the cold seepage active region. Science China: Earth Sciences, 56(4): 579–587. doi: 10.1007/s11430-012-4508-y
    [17] Liu Shanqi, Yin Fengling, Zhu Bojing, et al. 2015. Numerical simulation on the formation of cold seepage. Chinese Journal of Geophysics (in Chinese), 58(5): 1731–1741. doi: 10.6038/cjg20150523
    [18] Luan Xiwu, Liu Hong, Yue Baojing. 2010. Characteristics of cold seepage on side scan sonar sonogram. Geoscience (in Chinese), 24(3): 474–480. doi: 10.3969/j.issn.1000-8527.2010.03.009
    [19] Mavko G, Mukerji T, Dvorkin J. 2003. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media. Cambridge: Cambridge University Press, 106–142
    [20] Sassen R, Losh S L, Cathles III L, et al. 2001. Massive vein-filling gas hydrate: relation to ongoing gas migration from the deep subsurface in the Gulf of Mexico. Marine and Petroleum Geology, 18(5): 551–560. doi: 10.1016/S0264-8172(01)00014-9
    [21] Sauter E J, Muyakshin S I, Charlou J L, et al. 2006. Methane discharge from a deep-sea submarine mud volcano into the upper water column by gas hydrate-coated methane bubbles. Earth and Planetary Science Letters, 243(3–4): 354–365. doi: 10.1016/j.jpgl.2006.01.041
    [22] Shipboard Scientific Party. 2002. Drilling gas hydrates on hydrate ridge, Cascadia continental margin. In: Leg 204 Preliminary Report. College Station, TX: Texas A&M University
    [23] Taner M T, Koehler F, Sheriff R E. 1979. Complex seismic trace analysis. Geophysics, 44(6): 1041–1063. doi: 10.1190/1.1440994
    [24] Tryon M D, Brown K M. 2004. Fluid and chemical cycling at Bush Hill: implications for gas-and hydrate-rich environments. Geochemistry, Geophysics, Geosystems, 5(12): Q12004. doi: 10.1029/2004gc000778
    [25] Tryon M D, Brown K M, Torres M E. 2002. Fluid and chemical flux in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, II: hydrological processes. Earth and Planetary Science Letters, 201(3–4): 541–557. doi: 10.1016/s0012-821x(02)00732-x
    [26] Wu Rushan, Aki K. 1993. Scattering and Attenuation of Seismic Waves (in Chinese). Li Yuche, Lu Shoude, trans. Beijing: Seismic Press, 1–5
    [27] Xia Jie, Pang Zhaojun, Jin Dongping. 2012. Inner resonance of an in-plane elastic tethered satellite system. Journal of Vibration Engineering (in Chinese), 25(3): 232–237. doi: 10.3969/j.issn.1004-4523.2012.03.002
    [28] You Jiachun, Li Canping, Cheng Lifang, et al. 2015. Numerical simulation of methane plumes based on effective medium theory. Arabian Journal of Geosciences, 8(11): 9089–9100. doi: 10.1007/s12517-015-1916-2
    [29] Yuan Wenjun, Shang Yadong, Huang Yong, et al. 2013. The representation of meromorphic solutions to certain ordinary differential equations and its applications. Scientia Sinica Mathematica, 43(6): 563–575. doi: 10.1360/012012-159
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  556
  • HTML全文浏览量:  180
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-05
  • 录用日期:  2020-10-29
  • 网络出版日期:  2021-04-20
  • 刊出日期:  2021-05-01

目录

    /

    返回文章
    返回