Copper and zinc isotope variations in ferromanganese crusts and their isotopic fractionation mechanism

Lianhua He Jihua Liu Hui Zhang Jingjing Gao Aimei Zhu Ying Zhang

Lianhua He, Jihua Liu, Hui Zhang, Jingjing Gao, Aimei Zhu, Ying Zhang. Copper and zinc isotope variations in ferromanganese crusts and their isotopic fractionation mechanism[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1775-5
Citation: Lianhua He, Jihua Liu, Hui Zhang, Jingjing Gao, Aimei Zhu, Ying Zhang. Copper and zinc isotope variations in ferromanganese crusts and their isotopic fractionation mechanism[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1775-5

doi: 10.1007/s13131-021-1775-5

Copper and zinc isotope variations in ferromanganese crusts and their isotopic fractionation mechanism

Funds: The Shandong Provincial Natural Science Foundation of China under contract No. ZR2014DP009; the China Ocean Mineral Resource Research and Development Association Research Program under contract Nos DY135-N-1-03, DY135-C1-1-04 and DY135-R2-1-03; the Fund of the Construction and Operation of Test and Technical Support System for Natural Resources Investigation and Evaluation.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
  • Figure  1.  Sample localities.

    Figure  2.  Regression lines fitted through a mixed standard of IRMM 3702 Zn and IRMM 633 Cu during one single measurement session. a. 24 h analysis; b. 8 h analysis; c. 4 h analysis.

    Figure  3.  Photographs of Fe-Mn nodule samples and Fe-Mn crust samples.

    Figure  4.  Cu and Zn isotope ratios of Fe-Mn crusts collected at different depths. The error bars correspond to ±0.04‰ for Zn and ±0.08‰ for Cu.

    Figure  5.  Cu and Zn isotope ratios of Fe-Mn crusts plotted against their Co contents. The error bars correspond to ±0.04‰ for Zn and ±0.08‰ for Cu.

    Table  1.   Chromatographic separation procedure

    Chromatographic columnAG MP-1 M resin
    Clean resin5 mL H2O
    Condition resin4 mL 8.2 mol/L HCl
    Load sample1 mL 8.2 mol/L HCl
    Remove matrix7 mL 8.2 mol/L HCl + 0.001% H2O2
    Elute Cu20 mL 8.2 mol/L HCl + 0.01% HF + 0.001% H2O2
    Elute Fe15 mL 2 mol/L HCl + 0.001% H2O2
    Remove matrix2 mL 0.5 mol/L HNO3
    Elute Zn7 mL 0.5 mol/L HNO3
    下载: 导出CSV

    Table  2.   Element contents and element content ratios of samples

    Sample nameAl/%Ca/%Ti/%P/%Fe/%Mn/%Co/%Cu/%Zn/μg·g-1Co/MnFe/MnCu/MnZn/MnNi/CoTi/AlAl/FeP/Ni
    D001-80.652.840.980.3414.3527.450.420.18725.300.0150.520.006 70.002 61.691.510.0450.48
    D002-40.562.861.050.3612.9427.620.580.12788.200.0210.470.004 40.002 91.451.870.0440.43
    D91-10.693.380.820.5617.0723.470.720.03564.300.0300.730.001 30.002 40.621.180.0411.28
    D91A- 60.002 50.610.810.0561.40
    D87-20.602.611.100.4917.0521.850.910.02532.700.0420.780.001 10.002 40.431.830.0351.28
    D31-20.632.661.430.4217.1426.521.100.06726.200.0420.650.002 20.002 70.562.270.0370.67
    D18-10.302.940.990.4917.8723.870.830.04659.200.0350.750.001 50.002 80.563.280.0171.07
    D710.623.321.050.5615.8825.981.070.05623.000.0410.610.001 80.002 40.501.690.0391.06
    D60-10.472.881.140.4814.6524.651.230.03681.000.0500.590.001 20.002 80.402.440.0320.99
    D008-11.322.371.220.4116.7822.430.770.13698.000.0340.750.005 90.003 10.700.920.0780.75
    D02-1-20.452.281.100.3614.2223.311.030.04526.300.0440.610.001 60.002 30.422.420.0320.84
    TG05-10.882.690.900.4315.9922.620.630.07561.400.0280.710.003 20.002 50.671.030.0551.03
    D55-11.862.631.060.3816.6620.890.530.20732.200.0260.800.009 50.003 50.860.570.1120.83
    JC-D70D0.693.200.860.4615.1722.880.760.03543.700.0330.660.001 10.002 40.591.240.0461.03
    JC-D69A0.742.351.270.3517.2025.741.120.06530.000.0440.670.002 50.002 10.361.710.0430.87
    D11-A-A-20.342.570.960.3815.8724.790.940.05568.900.0380.640.001 90.002 30.502.850.0210.80
    D19-10.302.530.860.3612.9326.401.130.05698.600.0430.490.001 90.002 60.602.820.0240.52
    D450.992.160.890.4013.6218.830.610.08484.300.0320.720.004 40.002 60.570.900.0731.14
    D48-11.092.460.850.4817.4323.270.620.20941.600.0270.750.008 70.004 00.930.780.0630.84
    D20-10.812.230.650.4112.3025.060.830.08891.800.0330.490.003 20.003 60.950.790.0660.52
    D16-11.274.572.130.7831.4137.921.750.061039.000.0460.830.001 70.002 70.411.680.0411.08
    D09-11.651.670.950.2713.1121.850.410.43786.800.0190.600.019 90.003 61.730.580.1260.38
    D66-21.561.680.830.2611.4923.220.370.51902.500.0160.490.021 90.003 92.160.530.1360.32
    FG2a2.101.730.660.219.2225.340.250.791037.000.0100.360.031 00.004 14.190.310.2280.20
    FG10.352.671.000.3916.6925.660.980.05588.300.0380.650.002 00.002 30.502.880.0210.80
    D105-131.711.781.000.3014.1522.830.440.35767.400.0190.620.015 40.003 41.630.590.1210.42
    D43-1* 70.002 80.870.640.1300.67
    D27-1a*0.522.590.810.4115.5424.330.570.08642.500.0230.640.003 10.002 50.561.020.0451.46
    D61-20.512.711.230.4816.2125.361.350.03606.800.0530.640.001 10.002 40.342.390.0321.04
    D002-4-20.942.371.080.4419.3421.580.780.05537.000.0360.900.002 30.002 50.411.150.0491.38
    下载: 导出CSV

    Table  3.   Cu and Zn isotope ratios of samples

    Sample nameDepth/mLatitudeLongitudeδ66ZnIRMM3702/‰δ66ZnJMC-Lyon/‰δ65CuIRMM633/‰δ65CuNIST976/‰
    D91A-11 86516°50.39′N151°48.70′E0.620.920.550.56
    D711 95820°16.67′N174°12.11′E0.490.790.320.33
    D48-11 96021°36.52′N160°38.06′E0.680.980.540.55
    D66-21 91215°46.42′N163°05.32′E0.610.910.430.44
    D61-21 80515°29.97′N155°05.94′E0.731.030.590.60
    下载: 导出CSV
  • [1] Amira S, Spångberg D, Hermansson K. 2005. Distorted five-fold coordination of Cu2+(aq) from a Car-Parrinello molecular dynamics simulation. Physical Chemistry Chemical Physics, 7(15): 2874–2880. doi: 10.1039/b502427g
    [2] Anbar A D, Rouxel O. 2007. Metal stable isotopes in paleoceanography. Annual Review of Earth and Planetary Sciences, 35(1): 717–746. doi: 10.1146/
    [3] Aplin A C, Cronan D S. 1985. Ferromanganese oxide deposits from the Central Pacific Ocean: I. Encrustations from the Line Islands Archipelago. Geochimica Et Cosmochimica Acta, 49(2): 427–436. doi: 10.1016/0016-7037(85)90034-1
    [4] Archer C, Andersen M B, Cloquet C, et al. 2017. Inter-calibration of a proposed new primary reference standard AA-ETH Zn for zinc isotopic analysis. Journal of Analytical Atomic Spectrometry, 32(2): 415–419. doi: 10.1039/C6JA00282J
    [5] Albarède B, Beard B. 2004. Analytical methods for non-traditional isotopes in geochemistry of non-traditional stable isotopes. Reviews in Mineralogy & Geochemistry, 55: 113–152
    [6] Arrhenius G, Bonatti E. 1963. Neptunism and vulcanism in the ocean. Progress in Oceanography, 3: 7–22
    [7] Beard B L, Johnson C M, Cox L, et al. 1999. Iron isotope biosignatures. Science, 285(5435): 1889–1892. doi: 10.1126/science.285.5435.1889
    [8] Bertine K K, Turekian K K. 1973. Molybdenum in marine deposits. Geochimica et Cosmochimica Acta, 37(6): 1415–1434. doi: 10.1016/0016-7037(73)90080-X
    [9] Boyle E A, Edmond J M, Sholkovitz E R. 1977. The mechanism of iron removal in estuaries. Geochimica et Cosmochimica Acta, 41(9): 1313–1324. doi: 10.1016/0016-7037(77)90075-8
    [10] Boyle E A, John S, Abouchami W, et al. 2012. GEOTRACES IC1(BATS) contamination-prone trace element isotopes Cd, Fe, Pb, Zn, Cu, and Mo intercalibration. Limnology and Oceanography: Methods, 10(9): 653–665. doi: 10.4319/lom.2012.10.653
    [11] Bruland K W. 1980. Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth and Planetary Science Letters, 47(2): 176–198. doi: 10.1016/0012-821X(80)90035-7
    [12] Bruland K W. 1989. Complexation of zinc by natural organic ligands in the Central North Pacific. Limnology and Oceanography, 34(2): 269–285. doi: 10.4319/lo.1989.34.2.0269
    [13] Bruland K W, Lohan M C. 2003. Controls of trace metals in seawater. Treatise on Geochemistry, 6: 23–47
    [14] Bruland K W, Orians K J, Cowen J P. 1994. Reactive trace metals in the stratified central North Pacific. Geochimica et Cosmochimica Acta, 58(15): 3171–3182. doi: 10.1016/0016-7037(94)90044-2
    [15] Coale K H, Bruland K W. 1988. Copper complexation in the Northeast Pacific. Limnology and Oceanography, 33(5): 1084–1101. doi: 10.4319/lo.1988.33.5.1084
    [16] Craig J D, Andrews J E, Meylan M A. 1982. Ferromanganese deposits in the Hawaiian Archipelago. Marine Geology, 45(1–2): 127–157. doi: 10.1016/0025-3227(82)90183-9
    [17] Donat J R, Bruland K W. 1990. A comparison of two voltammetric techniques for determining zinc speciation in Northeast Pacific Ocean waters. Marine Chemistry, 28(4): 301–323. doi: 10.1016/0304-4203(90)90050-M
    [18] Fujii T, Moynier F, Dauphas N, et al. 2011. Theoretical and experimental investigation of nickel isotopic fractionation in species relevant to modern and ancient oceans. Geochimica et Cosmochimica Acta, 75(2): 469–482. doi: 10.1016/j.gca.2010.11.003
    [19] Gao Jingjing, Liu Jihua, Li Xianguo, et al. 2017. The determination of 52 elements in marine geological samples by an inductively coupled plasma optical emission spectrometry and an inductively coupled plasma mass spectrometry with a high-pressure closed digestion method. Acta Oceanologica Sinica, 36(1): 109–117. doi: 10.1007/s13131-017-0991-5
    [20] Halbach P, Segl M, Puteanus D, et al. 1983. Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas. Nature, 304(5928): 716–719. doi: 10.1038/304716a0
    [21] He Lianhua, Liu Jihua, Zhang Jun, et al. 2016. Separation of Cu and Zn in cobalt-rich crusts for isotope determination by MC-ICP MS. Journal of Instrumental Analysis (in Chinese), 35(10): 1347–1350
    [22] Hein J R, Bohrson W A, Schulz M S, et al. 1992. Variations in the fine-scale composition of a central Pacific ferromanganese crust: Paleoceanographic implications. Paleoceanography, 7(1): 63–77. doi: 10.1029/91PA02936
    [23] Hein J R, Koschinsky A, Halbach P, et al. 1997. Iron and Manganese Oxide Mineralization in the Pacific. Geological Society, London, Special Publications, 119(1): 123–138. doi: 10.1144/GSL.SP.1997.119.01.09
    [24] Hein J R, Schwab W C, Davis A S. 1988. Cobalt- and platinum-rich ferromanganese crusts and associated substrate rocks from the Marshall Islands. Marine Geology, 78(3–4): 255–283. doi: 10.1016/0025-3227(88)90113-2
    [25] John S G, Geis R W, Saito M A, et al. 2007. Zinc isotope fractionation during high-affinity and low-affinity zinc transport by the marine diatom Thalassiosira oceanica. Limnology and Oceanography, 52(6): 2710–2714. doi: 10.4319/lo.2007.52.6.2710
    [26] Kashiwabara T, Takahashi Y, Tanimizu M. 2009. A XAFS study on the mechanism of isotopic fractionation of molybdenum during its adsorption on ferromanganese oxides. Geochemical Journal, 43(6): e31–e36. doi: 10.2343/geochemj.1.0060
    [27] Koschinsky A, Halbach P. 1995. Sequential leaching of marine ferromanganese precipitates: Genetic implications. Geochimica et Cosmochimica Acta, 59(24): 5113–5132. doi: 10.1016/0016-7037(95)00358-4
    [28] Koschinsky A, Hein J R. 2003. Uptake of elements from seawater by ferromanganese crusts: solid-phase associations and seawater speciation. Marine Geology, 198(3–4): 331–351. doi: 10.1016/S0025-3227(03)00122-1
    [29] Little S H, Sherman D M, Vance D, et al. 2014a. Molecular controls on Cu and Zn isotopic fractionation in Fe-Mn crusts. Earth and Planetary Science Letters, 396: 213–222. doi: 10.1016/j.jpgl.2014.04.021
    [30] Little S H, Vance D, McManus J, et al. 2017. Copper isotope signatures in modern marine sediments. Geochimica et Cosmochimica Acta, 212: 253–273. doi: 10.1016/j.gca.2017.06.019
    [31] Little S H, Vance D, Walker-Brown C, et al. 2014b. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochimica et Cosmochimica Acta, 125: 673–693. doi: 10.1016/j.gca.2013.07.046
    [32] Lohan M C, Statham P J, Crawford D W. 2002. Total dissolved zinc in the upper water column of the subarctic North East Pacific. Deep-Sea Research Part II: Topical Studies in Oceanography, 49(24–25): 5793–5808. doi: 10.1016/S0967-0645(02)00215-1
    [33] Marcus M A, Manceau A, Kersten M. 2004. Mn, Fe, Zn and As speciation in a fast-growing ferromanganese marine nodule. Geochimica et Cosmochimica Acta, 68(14): 3125–3136. doi: 10.1016/j.gca.2004.01.015
    [34] Maréchal C N, Nicolas E, Douchet C, et al. 2000. Abundance of zinc isotopes as a marine biogeochemical tracer. Geochemistry, Geophysics, Geosystems, 1(5): 1015
    [35] Maréchal C N, Télouk P, Albarède F. 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chemical Geology, 156(1–4): 251–273. doi: 10.1016/S0009-2541(98)00191-0
    [36] Mason T F D, Weiss D J, Chapman J B, et al. 2005. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chemical Geology, 221(3–4): 170–187. doi: 10.1016/j.chemgeo.2005.04.011
    [37] Mason T F D, Weiss D J, Horstwood M, et al. 2004. High-precision Cu and Zn isotope analysis by plasma source mass spectrometry Part 1: Spectral interferences and their correction. Journal of Analytical Atomic Spectrometry, 19: 209–217. doi: 10.1039/b306958c
    [38] McManus J, Berelson W M, Severmann S, et al. 2006. Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential. Geochimica et Cosmochimica Acta, 70(18): 4643–4662. doi: 10.1016/j.gca.2006.06.1564
    [39] Moeller K, Schoenberg R, Pedersen R B, et al. 2012. Calibration of the new certified reference materials ERM-AE633 and ERM-AE647 for Copper and IRMM-3702 for zinc isotope amount ratio determinations. Geostandards and Geoanalytical Research, 36(2): 177–199. doi: 10.1111/j.1751-908X.2011.00153.x
    [40] Moffett J W, Dupont C. 2007. Cu complexation by organic ligands in the sub-arctic NW Pacific and Bering Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 54(4): 586–595. doi: 10.1016/j.dsr.2006.12.013
    [41] Morel F M M, Price N M. 2003. The biogeochemical cycles of trace metals in the oceans. Science, 300(5621): 944–947. doi: 10.1126/science.1083545
    [42] Nägler T F, Neubert N, Böttcher M E, et al. 2011. Molybdenum isotope fractionation in pelagic euxinia: Evidence from the modern Black and Baltic Seas. Chemical Geology, 289(1–2): 1–11. doi: 10.1016/j.chemgeo.2011.07.001
    [43] Navarrete J U, Borrok D M, Viveros M, et al. 2011. Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria. Geochimica et Cosmochimica Acta, 75(3): 784–799. doi: 10.1016/j.gca.2010.11.011
    [44] Pasquarello A, Petri I, Salmon P S, et al. 2001. First solvation shell of the Cu(II) aqua ion: evidence for fivefold coordination. Science, 291(5505): 856–859. doi: 10.1126/science.291.5505.856
    [45] Peacock C L, Sherman D M. 2007. Crystal-chemistry of Ni in marine ferromanganese crusts and nodules. American Mineralogist, 92(7): 1087–1092. doi: 10.2138/am.2007.2378
    [46] Pichat S, Douchet C, Albarède F. 2003. Zinc isotope variations in deep-sea carbonates from the eastern equatorial Pacific over the last 175 ka. Earth and Planetary Science Letters, 210(1–2): 167–178. doi: 10.1016/S0012-821X(03)00106-7
    [47] Piper D Z, Williamson M E. 1977. Composition of Pacific Ocean ferromanganese nodules. Marine Geology, 23(4): 285–303. doi: 10.1016/0025-3227(77)90036-6
    [48] Poulson Brucker R L, McManus J, Severmann S, et al. 2009. Molybdenum behavior during early diagenesis: Insights from Mo isotopes. Geochemistry, Geophysics, Geosystems, 10(6): Q06010
    [49] Poulson R L, Siebert C, McManus J, et al. 2006. Authigenic molybdenum isotope signatures in marine sediments. Geology, 34(8): 617–620. doi: 10.1130/G22485.1
    [50] Schauble E A. 2004. Applying stable isotope fractionation theory to new systems. Reviews in Mineralogy & Geochemistry, 55(1): 65–111
    [51] Scott C, Lyons T W. 2012. Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies. Chemical Geology, 324–325: 19–27. doi: 10.1016/j.chemgeo.2012.05.012
    [52] Siebert C, McManus J, Bice A, et al. 2006. Molybdenum isotope signatures in continental margin marine sediments. Earth and Planetary Science Letters, 241(3–4): 723–733. doi: 10.1016/j.jpgl.2005.11.010
    [53] Takano S, Tanimizu M, Hirata T, et al. 2014. Isotopic constraints on biogeochemical cycling of copper in the ocean. Nature Communications, 5(1): 5663. doi: 10.1038/ncomms6663
    [54] Thompson C M, Ellwood M J. 2014. Dissolved copper isotope biogeochemistry in the Tasman Sea, SW Pacific Ocean. Marine Chemistry, 165: 1–9. doi: 10.1016/j.marchem.2014.06.009
    [55] Thompson C M, Ellwood M J, Wille M. 2013. A solvent extraction technique for the isotopic measurement of dissolved copper in seawater. Analytica Chimica Acta, 775: 106–113. doi: 10.1016/j.aca.2013.03.020
    [56] Valley J W, Cole D R. 2001. Reviews in Mineralogy and Geochemistry Volume 43: Stable Isotope Geochemistry. Washington, DC: Mineralogical Society of America, 87–94
    [57] Vance D, Archer C, Bermin J, et al. 2008. The copper isotope geochemistry of rivers and the oceans. Earth and Planetary Science Letters, 274(1–2): 204–213. doi: 10.1016/j.jpgl.2008.07.026
    [58] Vance D, Zhao Y, Cullen J, et al. 2012. Zinc isotopic data from the NE Pacific reveals shallow recycling. Mineral Mag, 76: 1486
  • 加载中
  • 文章访问数:  91
  • HTML全文浏览量:  39
  • 被引次数: 0
  • 收稿日期:  2020-06-02
  • 录用日期:  2020-09-27
  • 网络出版日期:  2021-07-27