Oceanic vertical mixing of the lower halocline water in the Chukchi Borderland and Mendeleyev Ridge

Long Lin Hailun He Yong Cao Tao Li Yilin Liu Mingfeng Wang

Long Lin, Hailun He, Yong Cao, Tao Li, Yilin Liu, Mingfeng Wang. Oceanic vertical mixing of the lower halocline water in the Chukchi Borderland and Mendeleyev Ridge[J]. Acta Oceanologica Sinica, 2021, 40(11): 39-49. doi: 10.1007/s13131-021-1825-z
Citation: Long Lin, Hailun He, Yong Cao, Tao Li, Yilin Liu, Mingfeng Wang. Oceanic vertical mixing of the lower halocline water in the Chukchi Borderland and Mendeleyev Ridge[J]. Acta Oceanologica Sinica, 2021, 40(11): 39-49. doi: 10.1007/s13131-021-1825-z

doi: 10.1007/s13131-021-1825-z

Oceanic vertical mixing of the lower halocline water in the Chukchi Borderland and Mendeleyev Ridge

Funds: The National Natural Science Foundation of China under contract No. 42006037; the Chinese Polar Environmental Comprehensive Investigation & Assessment Programs, Grant from the Scientific Research Fund of the Second Institute of Oceanography, MNR under contract No. JB904; the National Key R&D Program of China under contract No. 2019YFC1509102.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Hydrographic and turbulent stations of the 7th Chinese National Arctic Research Expedition in the Chukchi Borderland and Mendeleyev Ridge of the Arctic Ocean in the summer of 2016. CTD stations are marked as red dots, stations with quality sADCP data are marked as red squares, and VMP stations are marked as red circles. The colormap shows the bathymetry.

    Figure  2.  T-S diagram of all stations.

    Figure  3.  Potential temperature (a, b), salinity (c, d), and buoyancy frequency (e, f) sections of Sections P1 (left) and E (right). White dash lines are the isopycnals of 26 kg/m3 and 27 kg/m3.

    Figure  4.  Buoyancy frequency N2 (a), vertical shear S2 (b) and Richardson number Ri (c) of each section. Upper red line is the isohaline of 33.6, and lower red line is the isohaline of 34.6.

    Figure  5.  Profiles of dissipation rate (a) and diapycnal diffusivity (b) of each station. Vertical black curve line represents the potential temperature profile, and LHW in temperature profile is marked with red color. The unit of ε is W/kg, and the unit of κρ is m2/s.

    Figure  6.  Spatial distribution of depth-averaged dissipation rate ε (a), diapycnal diffusivity κρ (b), temperature gradient dT/dt (c), and vertical heat flux FH (d) in LHW for each section. The unit of ε is W/kg, and the unit of κρ is m2/s.

    Figure  7.  Profile of double diffusive staircase potential temperature (a), salinity (b), and diffusivity comparison between observation (blue) and parameterization (red) in R20 in Mn AP (c).

    Figure  8.  Depth-averaged dissipation rate (blue) and strain variance in lower halocline water (red) of each station. Black pluses mark where double-diffusive staircases were observed.

    Figure  9.  Depth-averaged dissipation rate in lower halocline water and surface wind stress.

    Figure  10.  Depth-averaged dissipation rate in lower halocline water and semidiurnal tidal energy. The unit of ε is W/kg, and the unit of ETK is J/m.

    Table  1.   Comparison of the depth averaged diffusivity between observation and parameterization where double diffusion occurred in LHW

    Station nameObserved dissipation rate
    ε/(10–9 W·kg–1)
    Diffusivity derived from observed
    dissipation rate κ/(10–6 m2·s–2)
    Diffusivity based on double-diffusive
    theory κ/(10–6 m2·s–2)
    E241.577.905.16
    E261.146.696.49
    R201.477.895.38
    R211.449.555.90
    P261.016.755.05
    下载: 导出CSV
  • [1] Aagaard K, Coachman L K, Carmack E. 1981. On the halocline of the Arctic Ocean. Deep-Sea Research Part A: Oceanographic. Research Papers, 28(6): 529–545
    [2] Aksenov Y, Ivanov V V, Nurser A J G, et al. 2011. The Arctic circumpolar boundary current. Journal of Geophysical Research: Oceans, 116(C9): C09017
    [3] Alford M H. 2003. Improved global maps and 54-year history of wind-work on ocean inertial motions. Geophysical Research Letters, 30(8): 1424
    [4] Carmack E, Polyakov I, Padman L, et al. 2015. Toward quantifying the increasing role of oceanic heat in sea ice loss in the new Arctic. Bulletin of the American Meteorological Society, 96(12): 2079–2105. doi: 10.1175/BAMS-D-13-00177.1
    [5] Coachman L K, Aagaard K. 1974. Physical oceanography of Arctic and subarctic seas. In: Herman Y, ed. Marine Geology and Oceanography of the Arctic Seas. Berlin, Heidelberg: Springer: 1–72
    [6] D'Asaro E A, Morison J H. 1992. Internal waves and mixing in the Arctic Ocean. Deep-Sea Research Part A: Oceanographic. Research Papers, 39(2): S459–S484
    [7] Dmitrenko I A, Kirillov S A, Serra N, et al. 2014. Heat loss from the Atlantic water layer in the northern Kara Sea: Causes and consequences. Ocean Science, 10(4): 719–730. doi: 10.5194/os-10-719-2014
    [8] Erofeeva S, Egbert G. 2020. Arc5km2018: Arctic Ocean Inverse Tide Model on a 5 kilometer grid, 2018. https:/doi.org/10.18739/A21R6N14K [2021-02-10]
    [9] Fer I. 2009. Weak vertical diffusion allows maintenance of cold halocline in the central Arctic. Atmospheric and Oceanic Science Letters, 2(3): 148–152. doi: 10.1080/16742834.2009.11446789
    [10] Fer I, Voet G, Seim K S, et al. 2010. Intense mixing of the Faroe Bank Channel overflow. Geophysical Research Letters, 37(2): L02604
    [11] Fer I, Bosse A, Ferron B, et al. 2018. The dissipation of kinetic energy in the Lofoten Basin Eddy. Journal of Physical Oceanography, 48(6): 1299–1316. doi: 10.1175/JPO-D-17-0244.1
    [12] Flanagan J D, Radko T, Shaw W J, et al. 2014. Dynamic and double-diffusive instabilities in a weak pycnocline: Part II. Direct numerical simulations and flux laws. Journal of Physical Oceanography, 44(8): 1992–2012. doi: 10.1175/JPO-D-13-043.1
    [13] Gregg M C, D'Asaro E A, Riley J J, et al. 2018. Mixing efficiency in the ocean. Annual Review of Marine Science, 10: 443–473. doi: 10.1146/annurev-marine-121916-063643
    [14] Guthrie J D, Morison J H, Fer I. 2013. Revisiting internal waves and mixing in the Arctic Ocean. Journal of Geophysical Research: Oceans, 118(8): 3966–3977. doi: 10.1002/jgrc.20294
    [15] Hibler III W D. 1979. A dynamic thermodynamic sea ice model. Journal of Physical Oceanography, 9(4): 815–846. doi: 10.1175/1520-0485(1979)009<0815:ADTSIM>2.0.CO;2
    [16] Itoh M, Shimada K, Kamoshida T, et al. 2012. Interannual variability of Pacific Winter Water inflow through Barrow Canyon from 2000 to 2006. Journal of Oceanography, 68(4): 575–592. doi: 10.1007/s10872-012-0120-1
    [17] Jackson J M, Carmack E C, McLaughlin F A, et al. 2010. Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993–2008. Journal of Geophysical Research: Oceans, 115(C5): C05021
    [18] Jones E P, Anderson L G. 1986. On the origin of the chemical properties of the Arctic Ocean halocline. Journal of Geophysical Research: Oceans, 91(C9): 10759–10767. doi: 10.1029/JC091iC09p10759
    [19] Jones E P, Anderson L G, Swift J H. 1998. Distribution of Atlantic and Pacific waters in the upper Arctic Ocean: implications for circulation. Geophysical Research Letters, 25(6): 765–768. doi: 10.1029/98GL00464
    [20] Kunze E, Firing E, Hummon J M, et al. 2006. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. Journal of Physical Oceanography, 36(8): 1553–1576. doi: 10.1175/JPO2926.1
    [21] Lenn Y D, Wiles P J, Torres-Valdes S, et al. 2009. Vertical mixing at intermediate depths in the Arctic boundary current. Geophysical Research Letters, 36(5): L05601
    [22] Lincoln B J, Rippeth T P, Lenn Y D, et al. 2016. Wind-driven mixing at intermediate depths in an ice-free Arctic Ocean. Geophysical Research Letters, 43(18): 9749–9756. doi: 10.1002/2016GL070454
    [23] Lique C, Guthrie J D, Steele M, et al. 2014. Diffusive vertical heat flux in the Canada Basin of the Arctic Ocean inferred from moored instruments. Journal of Geophysical Research: Oceans, 119(1): 496–508. doi: 10.1002/2013JC009346
    [24] Liu Zhiyu, Lozovatsky I. 2012. Upper pycnocline turbulence in the northern South China Sea. Chinese Science Bulletin, 57(18): 2302–2306. doi: 10.1007/s11434-012-5137-8
    [25] Lozovatsky I, Liu Zhiyu, Fernando H J S, et al. 2013. The TKE dissipation rate in the northern South China Sea. Ocean Dynamics, 63(11–12): 1189–1201. doi: 10.1007/s10236-013-0656-7
    [26] Meyer A, Fer I, Sundfjord A, et al. 2017. Mixing rates and vertical heat fluxes north of Svalbard from Arctic winter to spring. Journal of Geophysical Research: Oceans, 122(6): 4569–4586. doi: 10.1002/2016JC012441
    [27] Munk W, Wunsch C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Research Part I: Oceanographic Research Papers, 45(12): 1977–2010. doi: 10.1016/S0967-0637(98)00070-3
    [28] Nagasawa M, Niwa Y, Hibiya T. 2000. Spatial and temporal distribution of the wind-induced internal wave energy available for deep water mixing in the North Pacific. Journal of Geophysical Research: Oceans, 105(C6): 13933–13943. doi: 10.1029/2000JC900019
    [29] Nasmyth P W. 1970. Oceanic turbulence [dissertation]. Vancouver: University of British Columbia
    [30] Osborn T R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. Journal of Physical Oceanography, 10(1): 83–89. doi: 10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2
    [31] Padman L, Dillon T M. 1991. Turbulent mixing near the Yermak Plateau during the coordinated Eastern Arctic Experiment. Journal of Geophysical Research: Oceans, 96(C3): 4769–4782. doi: 10.1029/90JC02260
    [32] Perovich D K, Light B, Eicken H, et al. 2007. Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: attribution and role in the ice-albedo feedback. Geophysical Research Letters, 34(19): L19505. doi: 10.1029/2007GL031480
    [33] Polzin K L, Toole J M, Schmitt R W. 1995. Finescale parameterizations of turbulent dissipation. Journal of Physical Oceanography, 25(3): 306–328. doi: 10.1175/1520-0485(1995)025<0306:FPOTD>2.0.CO;2
    [34] Qiu Bo, Chen Shuiming, Carter G S. 2012. Time-varying parametric subharmonic instability from repeat CTD surveys in the northwestern Pacific Ocean. Journal of Geophysical Research: Oceans, 117(C9): C09012
    [35] Qiu Chunhua, Huo Dan, Liu Changjian, et al. 2019. Upper vertical structures and mixed layer depth in the shelf of the northern South China Sea. Continental Shelf Research, 174: 26–34. doi: 10.1016/j.csr.2019.01.004
    [36] Rainville L, Winsor P. 2008. Mixing across the Arctic Ocean: microstructure observations during the Beringia 2005 expedition. Geophysical Research Letters, 35(8): L08606
    [37] Rippeth T P, Lincoln B J, Lenn Y D, et al. 2015. Tide-mediated warming of Arctic halocline by Atlantic heat fluxes over rough topography. Nature Geoscience, 8(3): 191–194. doi: 10.1038/ngeo2350
    [38] Rudels B, Anderson L G, Jones E P. 1996. Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean. Journal of Geophysical Research: Oceans, 101(C4): 8807–8821. doi: 10.1029/96JC00143
    [39] Rudels B, Jones E P, Schauer U, et al. 2004. Atlantic sources of the Arctic Ocean surface and halocline waters. Polar Research, 23(2): 181–208. doi: 10.1111/j.1751-8369.2004.tb00007.x
    [40] Shaw W J, Stanton T P. 2014a. Vertical diffusivity of the Western Arctic Ocean halocline. Journal of Geophysical Research: Oceans, 119(8): 5017–5038. doi: 10.1002/2013JC009598
    [41] Shaw W J, Stanton T P. 2014b. Dynamic and double-diffusive instabilities in a weak pycnocline: Part I. observations of heat flux and diffusivity in the vicinity of Maud Rise, Weddell Sea. Journal of Physical Oceanography, 44(8): 1973–1991. doi: 10.1175/JPO-D-13-042.1
    [42] Shimada K, Carmack E C, Hatakeyama K, et al. 2001. Varieties of shallow temperature maximum waters in the western Canadian Basin of the Arctic Ocean. Geophysical Research Letters, 28(18): 3441–3444. doi: 10.1029/2001GL013168
    [43] Simmons H L, Hallberg R W, Arbic B K. 2004. Internal wave generation in a global baroclinic tide model. Deep Sea Research Part II: Topical Studies in Oceanography, 51(25/26): 3043–3068. doi: 10.1016/j.dsr2.2004.09.015
    [44] Sirevaag A, Fer I. 2012. Vertical heat transfer in the Arctic Ocean: the role of double-diffusive mixing. Journal of Geophysical Research: Oceans, 117(C7): C07010
    [45] Spreen G, Kaleschke L, Heygster G. 2008. Sea ice remote sensing using AMSR-E 89-GHz channels. Journal of Geophysical Research: Oceans, 113(C2): C02S03
    [46] Steele M, Morison J H. 1993. Hydrography and vertical fluxes of heat and salt northeast of Svalbard in autumn. Journal of Geophysical Research: Oceans, 98(C6): 10013–10024. doi: 10.1029/93JC00937
    [47] Steele M, Morison J, Ermold W, et al. 2004. Circulation of summer Pacific halocline water in the Arctic Ocean. Journal of Geophysical Research: Oceans, 109(C2): C02027
    [48] Thorndike A S, Colony R. 1982. Sea ice motion in response to geostrophic winds. Journal of Geophysical Research: Oceans, 87(C8): 5845–5852. doi: 10.1029/JC087iC08p05845
    [49] Timmermans M L, Proshutinsky A, Golubeva E, et al. 2014. Mechanisms of Pacific summer water variability in the Arctic's Central Canada Basin. Journal of Geophysical Research: Oceans, 119(11): 7523–7548. doi: 10.1002/2014JC010273
    [50] Timmermans M L, Toole J, Krishfield R, et al. 2008. Ice-tethered profiler observations of the double-diffusive staircase in the Canada Basin thermocline. Journal of Geophysical Research: Oceans, 113(C1): C00A02
    [51] Toole J M, Timmermans M L, Perovich D K, et al. 2010. Influences of the ocean surface mixed layer and thermohaline stratification on Arctic Sea ice in the central Canada Basin. Journal of Geophysical Research: Oceans, 115(C10): C10018
    [52] Turner J S. 2010. The melting of ice in the Arctic Ocean: the influence of double-diffusive transport of heat from below. Journal of Physical Oceanography, 40(1): 249–256. doi: 10.1175/2009JPO4279.1
    [53] Woodgate R A, Aagaard K, Swift J H, et al. 2007. Atlantic water circulation over the Mendeleev Ridge and Chukchi Borderland from thermohaline intrusions and water mass properties. Journal of Geophysical Research: Oceans, 112(C2): C02005
    [54] Yang Jiayan. 2009. Seasonal and interannual variability of downwelling in the Beaufort Sea. Journal of Geophysical Research: Oceans, 114(C1): C00A14
    [55] Yang Qingxuan, Zhao Wei, Liang Xinfeng, et al. 2017. Elevated mixing in the periphery of mesoscale eddies in the South China Sea. Journal of Physical Oceanography, 47(4): 895–907. doi: 10.1175/JPO-D-16-0256.1
    [56] Zhang Jinlun, Steele M. 2007. Effect of vertical mixing on the Atlantic Water layer circulation in the Arctic Ocean. Journal of Geophysical Research: Oceans, 112(C4): C04S04
    [57] Zhao Jinping, Wang Weibo, Kang S H, et al. 2015. Optical properties in waters around the Mendeleev Ridge related to the physical features of water masses. Deep-Sea Research Part II: Topical Studies in Oceanography, 120: 43–51. doi: 10.1016/j.dsr2.2015.04.011
    [58] Zhong Wenli, Zhao Jinping. 2014. Deepening of the Atlantic Water core in the Canada Basin in 2003–11. Journal of Physical Oceanography, 44(9): 2353–2369. doi: 10.1175/JPO-D-13-084.1
    [59] Zhong Wenli, Guo Guijun, Zhao Jinping, et al. 2018. Turbulent mixing above the Atlantic Water around the Chukchi Borderland in 2014. Acta Oceanologica Sinica, 37(3): 31–41. doi: 10.1007/s13131-018-1198-0
    [60] Zhong Wenli, Steele M, Zhang Jinlun, et al. 2019. Circulation of Pacific winter water in the Western Arctic Ocean. Journal of Geophysical Research: Oceans, 124(2): 863–881. doi: 10.1029/2018JC014604
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1032
  • HTML全文浏览量:  319
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-02
  • 录用日期:  2021-03-09
  • 网络出版日期:  2021-07-02
  • 刊出日期:  2021-11-30

目录

    /

    返回文章
    返回