Numerical investigation of ocean waves generated by three typhoons in offshore China

Qing Shi Jun Tang Yongming Shen Yuxiang Ma

Qing Shi, Jun Tang, Yongming Shen, Yuxiang Ma. Numerical investigation of ocean waves generated by three typhoons in offshore China[J]. Acta Oceanologica Sinica, 2021, 40(12): 125-134. doi: 10.1007/s13131-021-1868-1
Citation: Qing Shi, Jun Tang, Yongming Shen, Yuxiang Ma. Numerical investigation of ocean waves generated by three typhoons in offshore China[J]. Acta Oceanologica Sinica, 2021, 40(12): 125-134. doi: 10.1007/s13131-021-1868-1

doi: 10.1007/s13131-021-1868-1

Numerical investigation of ocean waves generated by three typhoons in offshore China

Funds: The Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0403; the Program for Guangdong Introducing Innovative and Enterpreneurial Teams under contract No. 2019ZT08L213; the Guangdong Provincial Key Laboratory Project under contract No. 2019B121203011.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Tracks of the three typhoons in 2015.

    Figure  2.  Bathymetry and positions of the buoys.

    Figure  3.  Verification of wave height of the four buoys.

    Figure  4.  Validation of wave height and wind speed of satellite in the Yellow Sea (a; 31°–39°N, 119°–127°E), the East China Sea (b; 23°–31.18°N, 117.18°–131°E) and the South China Sea (c; 4°–23°N, 105°–119°E).

    Figure  5.  Maximum wind speed near the centre of typhoon of Chan-hom (1509), Linfa (1510), Nangka (1511).

    Figure  6.  Simulated wave height of the four buoys before and after correction of wind.

    Table  1.   Deviation of wave height between simulated data and buoys

    BuoyDeviation of wave height
    ParameterERA-InterimCFSv2CCMP
    1#CC0.8100.8320.873
    Bias/m0.7030.5580.592
    RMSE/m1.1210.9650.840
    2#CC0.8100.8320.873
    Bias/m–0.196–0.0340.041
    RMSE/m0.1290.1700.116
    3#CC0.9530.9620.925
    Bias/m–0.7960.035–0.623
    RMSE/m1.0370.7881.038
    CC0.5600.6600.751
    4#Bias/m–0.1650.0850.008
    RMSE/m0.2610.2610.154
    下载: 导出CSV

    Table  2.   Deviation of wave heigh and wind speed between simulated data and Jason-2

    AreaParameterDeviation of wave heightDeviation of wind speed
    ERA-InterimCFSv2CCMPERA-InterimCFSv2CCMP
    Yellow SeaCC0.9660.9670.9690.9540.9580.971
    Bias/m–0.415–0.4830.4231.8721.2360.773
    RMSE/m0.4910.7140.4952.7001.8000.995
    East China SeaCC0.8190.8760.8950.6860.6410.726
    Bias/m0.1480.0100.8384.4005.4002.400
    RMSE/m1.2321.1761.2816.0007.1004.400
    South China SeaCC0.8100.6730.7810.7280.7510.802
    Bias/m–0.4200.005–0.413–0.5360.040–0.389
    RMSE/m0.6180.3370.5090.5970.3550.479
    下载: 导出CSV
  • [1] Amante C, Eakins B W. 2009. ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. Boulder: NOAA, doi: 10.7289/V5C8276M
    [2] Atlas R, Ardizzone J, Hoffman R N. 2008. Application of satellite surface wind data to ocean wind analysis. In: Proceedings Volume 7087, Remote Sensing System Engineering. San Diego: International Society for Optical Engineering, 70870B
    [3] Atlas R, Hoffman R N, Ardizzone J, et al. 2011. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bulletin of the American Meteorological Society, 92(2): 157–174. doi: 10.1175/2010BAMS2946.1
    [4] Battjes J A, Janssen J P F M. 1978. Energy loss and set-up due to breaking of random waves. In: 16th International Conference on Coastal Engineering. Hamburg: American Society of Ciril Engineers, 569–587
    [5] Booij N, Holthuijsen L H, Ris R C. 1996. The “SWAN” wave model for shallow water. In: 25th International Conference on Coastal Engineering. Orlando: American Society of Ciril Engineers, 668–676
    [6] Cavaleri L, Rizzoli P M. 1981. Wind wave prediction in shallow water: theory and applications. Journal of Geophysical Research: Oceans, 86(C11): 10961–10973. doi: 10.1029/JC086iC11p10961
    [7] Eldberky Y, Battjes J A. 1995. Parameterization of triad interactions in wave energy models. In: Proceeding Coastal Dynamics Conference ’95. Gdańsk: ASCE, 140–148
    [8] Hasselmann K. 1974. On the spectral dissipation of ocean waves due to white capping. Boundary-Layer Meteorology, 6(1): 107–127
    [9] Hasselmann S, Hasselmann K, Allender J H, et al. 1985. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave specturm: Part Ⅱ. Parameterizations of the nonlinear energy transfer for application in wave models. Journal of Physical Oceanography, 15(11): 1378–1391. doi: 10.1175/1520-0485(1985)015<1378:CAPOTN>2.0.CO;2
    [10] Holland G J. 1980. An analytic model of the wind and pressure profiles in hurricanes. Monthly Weather Review, 108(8): 1212–1218. doi: 10.1175/1520-0493(1980)108<1212:AAMOTW>2.0.CO;2
    [11] Hubbert G D, Holland G J, Leslie L M, et al. 1991. A real-time system for forecasting tropical cyclone storm surges. Weather and Forecasting, 6(1): 86–97. doi: 10.1175/1520-0434(1991)006<0086:ARTSFF>2.0.CO;2
    [12] Komen G J, Hasselmann S, Hasselmann K. 1984. On the existence of a fully developed wind-sea spectrum. Journal of Physical Oceanography, 14(8): 1271–1285. doi: 10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2
    [13] Kuang Fangfang, Zhang Youquan, Zhang Junpeng, et al. 2015. Comparison and evaluation of three sea surface wind products in Taiwan Strait. Haiyang Xuebao (in Chinese), 37(5): 44–53
    [14] Li Jiangxia, Pan Shunqi, Chen Yongping, et al. 2018. Numerical estimation of extreme waves and surges over the northwest Pacific Ocean. Ocean Engineering, 153: 225–241. doi: 10.1016/j.oceaneng.2018.01.076
    [15] Liang Bingchen, Gao Huijun, Shao Zhuxiao. 2019. Characteristics of global waves based on the third-generation wave model SWAN. Marine Structures, 64: 35–53. doi: 10.1016/j.marstruc.2018.10.011
    [16] Liang Bingchen, Liu Xin, Li Huajun, et al. 2016. Wave climate hindcasts for the Bohai Sea, Yellow Sea, and East China Sea. Journal of Coastal Research, 32(1): 172–180
    [17] Miles J W. 1957. On the generation of surface waves by shear flows. Journal of Fluid Mechanics, 3(2): 185–204. doi: 10.1017/S0022112057000567
    [18] Mo Dongxue, Liu Yahao, Hou Yijun, et al. 2019. Bimodality and growth of the spectra of typhoon-generated waves in northern South China Sea. Acta Oceanologica Sinica, 38(11): 70–80. doi: 10.1007/s13131-019-1500-9
    [19] Pan Yi, Chen Yongping, Li Jiangxia, et al. 2016. Improvement of wind field hindcasts for tropical cyclones. Water Science and Engineering, 9(1): 58–66. doi: 10.1016/j.wse.2016.02.002
    [20] Phillips O M. 1957. On the generation of waves by turbulent wind. Journal of Fluid Mechanics, 2(5): 417–445. doi: 10.1017/S0022112057000233
    [21] Pierson Jr W J, Moskowitz L. 1964. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii. Journal of Geophysical Research, 69(24): 5181–5190. doi: 10.1029/JZ069i024p05181
    [22] Saha S, Moorthi S, Wu Xingren, et al. 2014. The NCEP climate forecast system version 2. Journal of Climate, 27(6): 2185–2208. doi: 10.1175/JCLI-D-12-00823.1
    [23] Schloemer R W. 1954. Analysis and Synthesis of Hurricane Wind Patterns Over Lake Okeechobee, Florida. Washington: Weather Bureau, Department of Commerce and US Army Corps of Engineers
    [24] Shao Zhuxiao, Liang Bingchen, Li Huajun, et al. 2018. Blended wind fields for wave modeling of tropical cyclones in the South China Sea and East China Sea. Applied Ocean Research, 71: 20–33. doi: 10.1016/j.apor.2017.11.012
    [25] Stopa J E. 2018. Wind forcing calibration and wave hindcast comparison using multiple reanalysis and merged satellite wind datasets. Ocean Modelling, 127: 55–69. doi: 10.1016/j.ocemod.2018.04.008
    [26] Stopa J E, Cheung K F. 2014. Intercomparison of wind and wave data from the ECMWF reanalysis interim and the NCEP climate forecast system reanalysis. Ocean Modelling, 75: 65–83. doi: 10.1016/j.ocemod.2013.12.006
    [27] Wang Qisong, Deng Jiaquan, Liu Cheng, et al. 2017. Application of superimposed wind fields to the hindcast modelling of typhoon-induced waves in the South China Sea. Haiyang Xuebao (in Chinese), 39(7): 70–79
    [28] Wang Juanjuan, Gao Zhiyi, Wang Jiuke, et al. 2016. Validation on Jason-2 significant wave height product for China seas. Oceanologia et Limnologia Sinica (in Chinese), 47(3): 509–517
    [29] Wang Zhifeng, Li Shuiqing, Dong Sheng, et al. 2018. Extreme wave climate variability in South China Sea. International Journal of Applied Earth Observation and Geoinformation, 73: 586–594. doi: 10.1016/j.jag.2018.04.009
    [30] Zhang Peng, Chen Xiaoling, Lu Jianzhong, et al. 2011. Research on wave simulation of Bohai Sea based on the CCMP remotely sensed sea winds. Marine Science Bulletin (in Chinese), 30(3): 266–271
    [31] Zhou Yuanyuan, Zhou Lin, Guan Hao. 2016. Numerical simulation of typhoon waves in the Northwest Pacific Ocean. Marine Forecast (in Chinese), 33(5): 23–30
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  337
  • HTML全文浏览量:  139
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-17
  • 录用日期:  2021-06-10
  • 网络出版日期:  2021-09-01
  • 刊出日期:  2021-11-25

目录

    /

    返回文章
    返回