Evolution and diagenetic implications of framboids in the methane-related carbonates of the northern Okinawa Trough

Kehong Yang Zhimin Zhu Yanhui Dong Fengyou Chu Weiyan Zhang

Kehong Yang, Zhimin Zhu, Yanhui Dong, Fengyou Chu, Weiyan Zhang. Evolution and diagenetic implications of framboids in the methane-related carbonates of the northern Okinawa Trough[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1869-0
Citation: Kehong Yang, Zhimin Zhu, Yanhui Dong, Fengyou Chu, Weiyan Zhang. Evolution and diagenetic implications of framboids in the methane-related carbonates of the northern Okinawa Trough[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1869-0

doi: 10.1007/s13131-021-1869-0

Evolution and diagenetic implications of framboids in the methane-related carbonates of the northern Okinawa Trough

Funds: the National Natural Science Foundation of China under contract Nos 41476050, 41106047, and 41506073.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Authigenic carbonate sampling locations. ETOPO1 data have been considered, which is a topography dataset available in resolutions of up to 1 min (https://www.ngdc.noaa.gov).

    Figure  2.  Authigenic carbonate sample from site GT-D30 investigated in this study (blue points and labels indicate the sampling locations for the C and O isotope analyses, and the biogenic marks are common).

    Figure  3.  Petrological characteristics of the authigenic carbonates from the Okinawa Trough. a. Plane-polarized light, b. reflected light. Q: quartz; Fsp: feldspar; Cc: calcite; and Py: pyrite. The numbers labeled in b are the same as in Fig. 4 which were analyzed using an electronic microprobe.

    Figure  4.  Framboidal minerals analyzed using an electronic microprobe (labeled as numbers).

    Figure  5.  Distribution histogram of the diameters of framboidal pyrites.

    Figure  6.  Mineral composition of the carbonate sample according to XRD analysis (Q, quartz; Chl, chlorite; Mc, mica; Ab, albite; Or, orthoclase; HMC, high Mg calcite; Dol, dolomite).

    Figure  7.  δ13C and δ18O values of cold seep carbonates in the northern Okinawa Trough.

    Table  1.   δ13C and δ18O compositions of the methane-related carbonates from site GT-D30 in the Okinawa Trough

    SampleLocationδ13C(‰, V-PDB)δ18O(‰, V-PDB)
    D30-1A−53.72.3
    D30-1B−53.12.4
    D30-1C−53.63.4
    D30-1D-52.62.6
    下载: 导出CSV

    Table  2.   Compositions of the samples measured using an electron microprobe and goethite

    No.SiO2CaOAl2O3MgONa2OK2OP2O5FeOSα-FeO(OH)FeS2S/FeTotal
    13.811.410.031.040.270.030.6275.880.1593.60.30.004101.1
    24.031.610.030.790.190.040.8276.473.1590.15.90.093103.6
    34.131.710.140.790.140.050.7275.970.1293.70.20.003101.6
    42.461.790.021.730.130.010.5572.730.2389.60.40.00796.7
    52.821.880.001.610.090.010.5476.190.1993.90.30.006101.2
    66.182.920.171.800.170.042.2170.420.0986.90.20.003100.6
    72.602.580.132.010.080.010.5077.340.1495.40.30.004103.6
    83.651.680.081.160.170.030.8178.110.1696.30.30.004104.2
    93.771.700.051.070.150.010.6478.730.1297.20.20.003104.8
    103.501.810.051.090.060.020.7179.910.1398.60.20.004106.1
    113.232.090.430.380.710.071.0670.7221.3557.740.00.679105.7
    123.491.700.040.730.520.050.8676.866.3486.211.90.186105.5
    134.462.200.180.660.950.061.4670.1819.5459.636.60.627106.2
    148.013.130.231.360.430.073.0171.230.0488.00.10.001104.3
    152.761.480.090.441.150.060.6969.4324.9551.146.80.809104.6
    168.613.230.381.440.620.113.1069.010.0785.20.10.002102.8
    178.763.050.241.180.650.103.3271.650.0588.50.10.001105.9
    187.792.940.251.340.360.063.0970.470.0487.10.10.001103.0
    193.421.530.011.820.180.010.7277.520.7794.71.40.022103.9
    203.051.280.002.050.180.030.3379.871.5496.62.90.043106.4
    213.161.770.021.810.280.050.9076.243.7289.17.00.110104.0
    220.601.350.060.440.950.080.1362.1746.0712.886.41.667102.8
    232.481.330.191.510.330.030.8168.1226.5847.249.80.878103.8
    243.481.410.001.510.150.020.5378.840.1397.30.20.004104.6
    252.261.250.022.030.210.030.5277.478.7483.616.40.254106.3
    262.491.450.011.860.150.030.6278.782.6693.75.00.076105.3
    272.241.100.001.730.040.020.1780.090.1798.80.30.005104.4
    Note: α-FeO(OH) and pyrite (FeS2) contents are calculated according to the atomic ratios of framboidal minerals. S/Fe represents the molar ratio, and the values in the other columns excluding those in the column titled No. represent percentage values for mass.
    下载: 导出CSV

    Table  3.   Sizes and characteristics of pyrites in cold seeps worldwide

    LocationSizeOccurrenceReferences
    Monterey Bay, California5–20 µminside the chamber of foraminifera shellsStakes et al. (1999)
    Nyegga pockmark, Norwegian Sea20–40 µmin authigenic carbonates, throughout the micritic aragoniteMazzini et al. (2006), Feng et al. (2015)
    Black sea20–30 µm, formed of smaller globules of approximately 3–4 µm in diameter or smaller lesspyrite crusts in sedimentsPeckmann et al. (2001)
    Black Seain the authigenic carbonatesMazzini et al. (2004),
    Gulf of Cadiz (SW Iberian Peninsula)5.5–59.1 µm, framboids with an average diameter of 21.3 µmin the carbonatesMerinero et al. (2008)
    Continental slope of the NE South China Sea5–20 µmauthigenic pyrites in sedimentsZhang et al. (2014)
    Shenhu area, South China Seafrom 2.3 µm to 132 µm with an varied average in different layerspyrite aggregates in sedimentsLin et al. (2016a, b)
    Okinawa Through4–17 µmin authigenic carbonatesthis study
    Note: − means no data.
    下载: 导出CSV

    Table  4.   Correlations between FeS2 and major elements

    SiO2CaOAl2O3MgONa2OK2OP2O5
    FeS2–0.418–0.2750.153–0.5360.7220.335–0.233
    下载: 导出CSV
  • [1] Baker P A, Kastner M. 1981. Constraints on the formation of sedimentary dolomite. Science, 213(4504): 214–216. doi: 10.1126/science.213.4504.214
    [2] Berner R A. 1984. Sedimentary pyrite formation: An update. Geochimica et Cosmochimica Acta, 48(4): 605–615. doi: 10.1016/0016-7037(84)90089-9
    [3] Birgel D, Feng D, Roberts H H, et al. 2011. Changing redox conditions at cold seeps as revealed by authigenic carbonates from Alaminos Canyon, northern Gulf of Mexico. Chemical Geology, 285(1−4): 82–96. doi: 10.1016/j.chemgeo.2011.03.004
    [4] Boetius A, Ravenschlag K, Schubert C J, et al. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804): 623–626. doi: 10.1038/35036572
    [5] Bond D P G, Wignall P B. 2010. Pyrite framboid study of marine Permian-Triassic boundary sections: A complex anoxic event and its relationship to contemporaneous mass extinction. GSA Bulletin, 122(7−8): 1265–1279. doi: 10.1130/B30042.1
    [6] Burton E A. 1993. Controls on marine carbonate cement mineralogy: review and reassessment. Chemical Geology, 105(1): 163–179. doi: 10.1016/0009-2541(93)90124-2
    [7] Campbell K A. 2006. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions. Palaeogeography, Palaeoclimatology, Palaeoecology, 232(2−4): 362–407. doi: 10.1016/j.palaeo.2005.06.018
    [8] Cao Hong, Sun Zhilei, Wu Nengyou, et al. 2020. Mineralogical and geochemical records of seafloor cold seepage history in the northern Okinawa Trough, East China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 155: 103165. doi: 10.1016/j.dsr.2019.103165
    [9] Chen Duofu, Feng Dong, Su Zheng, et al. 2006. Pyrite crystallization in seep carbonates at gas vent and hydrate site. Materials Science and Engineering: C, 26(4): 602–605. doi: 10.1016/j.msec.2005.08.037
    [10] Chen Yingfeng, Matsumoto R, Paull C K, et al. 2007. Methane-derived authigenic carbonates from the northern Gulf of Mexico -- MD02 Cruise. Journal of Geochemical Exploration, 95(1−3): 1–15. doi: 10.1016/j.gexplo.2007.05.011
    [11] Crémière A, Pellerin A, Wing B A, et al. 2020. Multiple sulfur isotopes in methane seep carbonates track unsteady sulfur cycling during anaerobic methane oxidation. Earth and Planetary Science Letters, 532: 115994. doi: 10.1016/j.jpgl.2019.115994
    [12] Fang Yinxia, Gao Jinyao, Li Mingbi, et al. 2005. Relation between gas hydrate and geologic structures in the Okinawa Trough. Marine Geology & Quaternary Geology (in Chinese), 25(1): 85–91
    [13] Fang Yinxia, Li Mingbi, Jin Xianglong, et al. 2003. Formation condition of gas hydrate in Okinawa Trough of the East China Sea. Bulletin of Science and Technology (in Chinese), 19(1): 1–5. doi: 10.3969/j.issn.1001-7119.2003.01.001
    [14] Feng Dong, Chen Duofu, Peckmann J. 2009. Rare earth elements in seep carbonates as tracers of variable redox conditions at ancient hydrocarbon seeps. Terra Nova, 21(1): 49–56. doi: 10.1111/j.1365-3121.2008.00855.x
    [15] Feng Dong, Lin Zhijia, Bian Youyan, et al. 2013. Rare earth elements of seep carbonates: Indication for redox variations and microbiological processes at modern seep sites. Journal of Asian Earth Sciences, 65: 27–33. doi: 10.1016/j.jseaes.2012.09.002
    [16] Feng Xiancui, Wang Wei, Wang Wenqian, et al. 2015. Methane-derived authigenic carbonates in Nyegga pockmarks, offshore Mid-Norway. Geochimica (in Chinese), 44(4): 348–359
    [17] Franchi F, Rovere M, Gamberi F, et al. 2017. Authigenic minerals from the Paola Ridge (southern Tyrrhenian Sea): Evidences of episodic methane seepage. Marine and Petroleum Geology, 86: 228–247. doi: 10.1016/j.marpetgeo.2017.05.031
    [18] Greinert J, Bohrmann G, Suess E. 2001. Gas hydrate-associated carbonates and methane-venting at Hydrate Ridge: classification, distribution, and origin of authigenic lithologies. In: Paull C K, Dillon W P, eds. Natural Gas Hydrates: Occurrence, Distribution, and Detection. Washington, D.C.: American Geophysical Union, 124: 99–113, doi: 10.1029/GM124p0099
    [19] Guan Hongxiang, Sun Zhilei, Mao Shengyi, et al. 2019. Authigenic carbonate formation revealed by lipid biomarker inventory at hydrocarbon seeps: A case study from the Okinawa Trough. Marine and Petroleum Geology, 101: 502–511. doi: 10.1016/j.marpetgeo.2018.12.028
    [20] Huggins F E, Huffman G P, Kosmack D A, et al. 1980. Mossbauer detection of goethite (α-FeOOH) in coal and its potential as an indicator of coal oxidation. International Journal of Coal Geology, 1(1): 75–81. doi: 10.1016/0166-5162(80)90007-5
    [21] Large D J, Sawłowicz Z, Spratt J. 1999. A cobaltite-framboidal pyrite association from the Kupferschiefer: possible implications for trace element behaviour during the earliest stages of diagenesis. Mineralogical Magazine, 63(3): 353–361. doi: 10.1180/002646199548574
    [22] Li Jiwei, Peng Xiaotong, Bai Shijie, et al. 2018. Biogeochemical processes controlling authigenic carbonate formation within the sediment column from the Okinawa Trough. Geochimica et Cosmochimica Acta, 222: 363–382. doi: 10.1016/j.gca.2017.10.029
    [23] Lin Zhizhong, Sun Xiaoming, Lu Yang, et al. 2016a. Stable isotope patterns of coexisting pyrite and gypsum indicating variable methane flow at a seep site of the Shenhu area, South China Sea. Journal of Asian Earth Sciences, 123: 213–223. doi: 10.1016/j.jseaes.2016.04.007
    [24] Lin Zhizhong, Sun Xiaoming, Lu Yang, et al. 2017. The enrichment of heavy iron isotopes in authigenic pyrite as a possible indicator of sulfate-driven anaerobic oxidation of methane: Insights from the South China Sea. Chemical Geology, 449: 15–29. doi: 10.1016/j.chemgeo.2016.11.032
    [25] Lin Zhizhong, Sun Xiaoming, Peckmann J, et al. 2016b. How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea. Chemical Geology, 440: 26–41. doi: 10.1016/j.chemgeo.2016.07.007
    [26] Lin Qi, Wang Jiasheng, Algeo T J, et al. 2016c. Enhanced framboidal pyrite formation related to anaerobic oxidation of methane in the sulfate-methane transition zone of the northern South China Sea. Marine Geology, 379: 100–108. doi: 10.1016/j.margeo.2016.05.016
    [27] Lu Zhenquan, Gong Jianming, Wu Bihao, et al. 2003. Geochemical perspective of gas hydrate in the East China Sea. Marine Geology & Quaternary Geology (in Chinese), 23(3): 77–81
    [28] Lu Yang, Sun Xiaoming, Xu Huifang, et al. 2018. Formation of dolomite catalyzed by sulfate-driven anaerobic oxidation of methane: Mineralogical and geochemical evidence from the northern South China Sea. American Mineralogist, 103(5): 720–734. doi: 10.2138/am-2018-6226
    [29] Luan Xiwu, Qin Yunshan. 2005. Discovery of the cold seeps in the west Miyako section of Okiniwa Through. Chinese Science Bulletin (in Chinese), 50(8): 802–810
    [30] Lüning S, Kolonic S, Loydell D K, et al. 2003. Reconstruction of the original organic richness in weathered Silurian shale outcrops (Murzuq and Kufra basins, southern Libya). GeoArabia, 8: 299–308
    [31] Maclean L C W, Tyliszczak T, Gilbert P U P A, et al. 2008. A high-resolution chemical and structural study of framboidal pyrite formed within a low-temperature bacterial biofilm. Geobiology, 6(5): 471–480. doi: 10.1111/j.1472-4669.2008.00174.x
    [32] Mazzini A, Ivanov M K, Parnell J, et al. 2004. Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation to seeping fluids. Marine Geology, 212(1−4): 153–181. doi: 10.1016/j.margeo.2004.08.001
    [33] Mazzini A, Svensen H, Hovland M, et al. 2006. Comparison and implications from strikingly different authigenic carbonates in a Nyegga complex pockmark, G11, Norwegian Sea. Marine Geology, 231(1−4): 89–102. doi: 10.1016/j.margeo.2006.05.012
    [34] Merinero R, Lunar R, Martínez-Frías J, et al. 2008. Iron oxyhydroxide and sulphide mineralization in hydrocarbon seep-related carbonate submarine chimneys, Gulf of Cadiz (SW Iberian Peninsula). Marine and Petroleum Geology, 25(8): 706–713. doi: 10.1016/j.marpetgeo.2008.03.005
    [35] Moore T S, Murray R W, Kurtz A C, et al. 2004. Anaerobic methane oxidation and the formation of dolomite. Earth and Planetary Science Letters, 229(1−2): 141–154. doi: 10.1016/j.jpgl.2004.10.015
    [36] Naehr T H, Eichhubl P, Orphan V J, et al. 2007. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study. Deep Sea Research Part II: Topical Studies in Oceanography, 54(11−13): 1268–1291. doi: 10.1016/j.dsr2.2007.04.010
    [37] Nielsen J K, Shen Yanan. 2004. Evidence for sulfidic deep water during the Late Permian in the East Greenland Basin. Geology, 32(12): 1037–1040. doi: 10.1130/G20987.1
    [38] Orphan V J, House C H, Hinrichs K U, et al. 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science, 293(5529): 484–487. doi: 10.1126/science.1061338
    [39] Pan Zhiliang, Shi Siqi. 1986. Study on sediments and sedimentation in Okinawa Trough. Marine Geology & Quaternary Geology (in Chinese), 6(1): 17–29
    [40] Peckmann J, Reimer A, Luth U, et al. 2001. Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea. Marine Geology, 177(1−2): 129–150. doi: 10.1016/s0025-3227(01)00128-1
    [41] Peng Xiaotong, Guo Zixiao, Chen Shun, et al. 2017. Formation of carbonate pipes in the northern Okinawa Trough linked to strong sulfate exhaustion and iron supply. Geochimica et Cosmochimica Acta, 205: 1–13. doi: 10.1016/j.gca.2017.02.010
    [42] Pierre C. 2017. Origin of the authigenic gypsum and pyrite from active methane seeps of the southwest African Margin. Chemical Geology, 449: 158–164. doi: 10.1016/j.chemgeo.2016.11.005
    [43] Pierre C, Blanc-Valleron M M, Demange J, et al. 2012. Authigenic carbonates from active methane seeps offshore southwest Africa. Geo-Marine Letters, 32(5): 501–513. doi: 10.1007/s00367-012-0295-x
    [44] Pirlet H, Wehrmann L M, Foubert A, et al. 2012. Unique authigenic mineral assemblages reveal different diagenetic histories in two neighbouring cold-water coral mounds on Pen Duick Escarpment, Gulf of Cadiz. Sedimentology, 59(2): 578–604. doi: 10.1111/j.1365-3091.2011.01267.x
    [45] Raiswell R, Berner R A. 1985. Pyrite formation in euxinic and semi-euxinic sediments. American Journal of Science, 285(8): 710–724. doi: 10.2475/ajs.285.8.710
    [46] Rickard D T. 1970. The origin of framboids. Lithos, 3(3): 269–293. doi: 10.1016/0024-4937(70)90079-4
    [47] Rickard D. 2019. Sedimentary pyrite framboid size-frequency distributions: A meta-analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 522: 62–75. doi: 10.1016/j.palaeo.2019.03.010
    [48] Scott R J, Meffre S, Woodhead J, et al. 2009. Development of framboidal pyrite during diagenesis, low-grade regional metamorphism, and hydrothermal alteration. Economic Geology, 104(8): 1143–1168. doi: 10.2113/gsecongeo.104.8.1143
    [49] Sibuet J C, Deffontaines B, Hsu S K, et al. 1998. Okinawa trough backarc basin: Early tectonic and magmatic evolution. Journal of Geophysical Research: Solid Earth, 103(B12): 30245–30267. doi: 10.1029/98jb01823
    [50] Smrzka D, Feng D, Himmler T, et al. 2020. Trace elements in methane-seep carbonates: Potentials, limitations, and perspectives. Earth-Science Reviews, 208: 103263. doi: 10.1016/j.earscirev.2020.103263
    [51] Snyder G T, Hiruta A, Matsumoto R, et al. 2007. Pore water profiles and authigenic mineralization in shallow marine sediments above the methane-charged system on Umitaka Spur, Japan Sea. Deep Sea Research Part II: Topical Studies in Oceanography, 54(11−13): 1216–1239. doi: 10.1016/j.dsr2.2007.04.001
    [52] Stakes D S, Orange D, Paduan J B, et al. 1999. Cold-seeps and authigenic carbonate formation in Monterey Bay, California. Marine Geology, 159(1−4): 93–109. doi: 10.1016/s0025-3227(98)00200-x
    [53] Suess E. 2014. Marine cold seeps and their manifestations: geological control, biogeochemical criteria and environmental conditions. International Journal of Earth Sciences, 103(7): 1889–1916. doi: 10.1007/s00531-014-1010-0
    [54] Sun Zhilei, Wei Hehong, Zhang Xunhua, et al. 2015. A unique Fe-rich carbonate chimney associated with cold seeps in the Northern Okinawa Trough, East China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 95: 37–53. doi: 10.1016/j.dsr.2014.10.005
    [55] Sun Zhilei, Wu Nengyou, Cao Hong, et al. 2019. Hydrothermal metal supplies enhance the benthic methane filter in oceans: An example from the Okinawa Trough. Chemical Geology, 525: 190–209. doi: 10.1016/j.chemgeo.2019.07.025
    [56] Tang Yong, Jin Xianglong, Fang Yinxia, et al. 2003. Seismic study of gas hydrate BSR in the Okinawa Trough. Acta Oceanologica Sinica (in Chinese), 25(4): 59–66. doi: 10.3321/j.issn:0253-4193.2003.04.008
    [57] Tong Hongpeng, Feng Dong, Peckmann J, et al. 2019. Environments favoring dolomite formation at cold seeps: A case study from the Gulf of Mexico. Chemical Geology, 518: 9–18. doi: 10.1016/j.chemgeo.2019.04.016
    [58] Tsunogai U, Ishibashi J, Wakita H, et al. 1996. Fresh water seepage and pore water recycling on the seafloor: Sagami Trough subduction zone, Japan. Earth and Planetary Science Letters, 138(1−4): 157–168. doi: 10.1016/0012-821X(95)00228-5
    [59] Valentine D L. 2002. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments: a review. Antonie Van Leeuwenhoek, 81(1−4): 271–282. doi: 10.1023/A:1020587206351
    [60] Wang Meng, Li Qing, Cai Feng, et al. 2019. Formation of authigenic carbonates at a methane seep site in the middle Okinawa Trough, East China Sea. Journal of Asian Earth Sciences, 185: 104028. doi: 10.1016/j.jseaes.2019.104028
    [61] Wignall P B, Newton R, Brookfield M E. 2005. Pyrite framboid evidence for oxygen-poor deposition during the Permian-Triassic crisis in Kashmir. Palaeogeography, Palaeoclimatology, Palaeoecology, 216(3−4): 183–188. doi: 10.1016/j.palaeo.2004.10.009
    [62] Wilkin R T, Barnes H L. 1997. Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61(2): 323–339. doi: 10.1016/S0016-7037(96)00320-1
    [63] Wilkin R T, Barnes H L, Brantley S L. 1996. The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions. Geochimica et Cosmochimica Acta, 60(20): 3897–3912. doi: 10.1016/0016-7037(96)00209-8
    [64] Wu Bihao, Zhang Guangxue, Zhu Youhai, et al. 2003. Progress of gas hydrate investigation in China offshore. Earth Science Frontiers (in Chinese), 10(1): 177–189. doi: 10.3321/j.issn:1005-2321.2003.01.021
    [65] Xie Lei, Wang Jiasheng, Wu Nengyou, et al. 2013. Characteristics of authigenic pyrites in shallow core sediments in the Shenhu area of the northern South China Sea: Implications for a possible mud volcano environment. Science China Earth Sciences, 56(4): 541–548. doi: 10.1007/s11430-012-4511-3
    [66] Xu Cuiling, Wu Nengyou, Sun Zhilei, et al. 2018. Methane seepage inferred from pore water geochemistry in shallow sediments in the western slope of the Mid-Okinawa Trough. Marine and Petroleum Geology, 98: 306–315. doi: 10.1016/j.marpetgeo.2018.08.021
    [67] Zhang Mei, Konishi H, Xu Huifang, et al. 2014. Morphology and formation mechanism of pyrite induced by the anaerobic oxidation of methane from the continental slope of the NE South China Sea. Journal of Asian Earth Sciences, 92: 293–301. doi: 10.1016/j.jseaes.2014.05.004
  • 加载中
计量
  • 文章访问数:  21
  • HTML全文浏览量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-02
  • 录用日期:  2021-06-25
  • 网络出版日期:  2021-09-03

目录

    /

    返回文章
    返回