Magnetic minerals in Mid-Pleistocene sediments on the Caiwei Guyot, Northwest Pacific and their response to the Mid-Brunhes climate event

Liang Yi Haifeng Wang Geng Liu Yanping Chen Huiqiang Yao Xiguang Deng

Liang Yi, Haifeng Wang, Geng Liu, Yanping Chen, Huiqiang Yao, Xiguang Deng. Magnetic minerals in Mid-Pleistocene sediments on the Caiwei Guyot, Northwest Pacific and their response to the Mid-Brunhes climate event[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1872-5
Citation: Liang Yi, Haifeng Wang, Geng Liu, Yanping Chen, Huiqiang Yao, Xiguang Deng. Magnetic minerals in Mid-Pleistocene sediments on the Caiwei Guyot, Northwest Pacific and their response to the Mid-Brunhes climate event[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1872-5

doi: 10.1007/s13131-021-1872-5

Magnetic minerals in Mid-Pleistocene sediments on the Caiwei Guyot, Northwest Pacific and their response to the Mid-Brunhes climate event

Funds: The Natural Science Foundation of Shanghai under contract No. 19ZR1459800; the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0106; the Project of Global Changing and Air-sea Interaction under contract No. GASI-GEOGE-04.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
    •  / 
  • Figure  1.  Schematic map showing the study area and oceanographic setting. The flow passing through the seamount and a Taylor column was observed based on the data obtained by the conductivity temperature and depth instrument (CTD) and mooring system (Guo et al., 2020). The flows were modified from previous works (Guo et al., 2020; Kawabe and Fujio, 2010; Zhai and Gu, 2020). Reference sites were mentioned or discussed in the main text.

    Figure  2.  Core MABC-11 with the age-depth model during the middle Pleistocene. a. The excess 230Th data and the estimated SAR for the upper part (Yang et al., 2020); b. photo of the core; c–e. ChRM declination and inclination, with the polarity of core MABC-11 (Yi et al., 2021); f. the geological polarity timescale (GPTS) (Hilgen et al., 2012), and g–h. comparison between element Ca of core MABC-11 and the benthic δ18O stack LR04 (Lisiecki and Raymo, 2005) on glacial-interglacial timescales, inferring a higher level of marine productivity in the Caiwei Guyot during interglacial intervals (Yi et al., 2021). B: Brunhes chron; M: Matuyama chron; J: Jaramillo subchron; M/B: the Matuyama/Brunhes boundary.

    Figure  3.  Some basic information of the sediments of core MABC–11. a–b. Sediment grain-size distributions, c. REE distribution patterns of the sediments of core MABC–11 (this study) and the sediments of core MABC–25 and water columns close to the Caiwei Guyot (Deng et al., 2017), and d. box plot of clay minerals in the sediments of core MABC–11. PDF: probability density function, CDF: cumulative distribution function Sme, smectite, Kln: kaolinite, Chl: chlorite.

    Figure  4.  Changes in magnetic parameters of core MABC-11.

    Figure  5.  Relationship between magnetic parameters of core MABC-11.

    Figure  6.  Rock magnetism of representative samples of core MABC–11. a. Hysteresis loop of one sample in original (dash line) and calibrated (solid line) forms, and other samples were not shown due to the high similarity; the standard deviation of Bcr values is 1.87 × 106; b. day plot of 17 selected samples; SD, single domain; PSD, pseudo–single domain; MD, multiple domain; c. IRM curves of 17 selected samples; and d–g. FORC diagrams and ZFCs with their derivatives of two samples (25 cm and 45 cm in depth, respectively).

    Figure  7.  Comparison of various environmental proxies in the middle Pleistocene (210–820 ka). a. the benthic δ18O stack LR04 (Lisiecki and Raymo, 2005), vs. the element Ca of core MABC-11 (Yi et al., 2021); MIS, marine isotope stages, which are labelled as numbers 7–19 on the top; b. the modelled Antarctic ice volume (AIS) (Pollard and DeConto, 2009), vs. the Circumpolar Deep Water (CDW) inferred from the gradient of δ13C record of ODP Sites 1088 and 1090 (Hodell and Venz-Curtis, 2006); c. three magnetic parameters (χARM, χARM/χ, and χARM/SIRM) of core MABC-11 derived in this study, vs. the EPICA Dome C ice core CO2 (Lüthi et al., 2008); d. the planktonic δ13C of western Pacific ODP Site 806 (Berger et al., 1993) and eastern Pacific ODP Site 849 (Mix et al., 1995); and e. Stack grain size (MGS) and magnetic susceptibility (MS) of Chinese Loess Plateau (Sun et al., 2006).

    Table  1.   REE contents of core MABC–11

    ElementREE contents/10−6
    Note: 1)Data from Deng et al. (2017).
    下载: 导出CSV
  • [1] Ao Hong, Rohling E J, Stringer C, et al. 2020. Two-stage mid-Brunhes climate transition and mid-Pleistocene human diversification. Earth-Science Reviews, 210: 103354. doi: 10.1016/j.earscirev.2020.103354
    [2] Barth A M, Clark P U, Bill N S, et al. 2018. Climate evolution across the Mid-Brunhes transition. Climate of the Past, 14(12): 2071–2087. doi: 10.5194/cp-14-2071-2018
    [3] Berger W H, Bickert T, Schmidt H, et al. 1993. Quaternary carbon isotope record of pelagic foraminifers: Site 806, Ontong Java Plateau. In: Proceedings of the Ocean Drilling Program, Volume 130 Scientific Results. College State, TX, USA: Ocean Drilling Program, 381–395
    [4] Chang Liao, Harrison R J, Zeng Fan, et al. 2018. Coupled microbial bloom and oxygenation decline recorded by magnetofossils during the Palaeocene–Eocene Thermal Maximum. Nature Communications, 9(1): 4007. doi: 10.1038/s41467-018-06472-y
    [5] Chang Liao, Heslop D, Roberts A P, et al. 2016. Discrimination of biogenic and detrital magnetite through a double Verwey transition temperature. Journal of Geophysical Research: Solid Earth, 121(1): 3–14. doi: 10.1002/2015JB012485
    [6] Cheng Hai, Edwards R L, Sinha A, et al. 2016. The Asian monsoon over the past 640, 000 years and ice age terminations. Nature, 534(7609): 640–646. doi: 10.1038/nature18591
    [7] Clark P U, Alley R B, Pollard D. 1999. Northern Hemisphere ice-sheet influences on global climate change. Science, 286(5442): 1104–1111. doi: 10.1126/science.286.5442.1104
    [8] Day R, Fuller M, Schmidt V A. 1977. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Physics of the Earth and Planetary Interiors, 13(4): 260–267. doi: 10.1016/0031-9201(77)90108-X
    [9] Deng Yinan, Ren Jiangbo, Guo Qingjun, et al. 2017. Rare earth element geochemistry characteristics of seawater and porewater from deep sea in western Pacific. Scientific Reports, 7(1): 16539. doi: 10.1038/s41598-017-16379-1
    [10] Deng Xiguang, Yi Liang, Paterson G A, et al. 2016. Magnetostratigraphic evidence for deep-sea erosion on the Pacific Plate, south of Mariana Trench, since the middle Pleistocene: potential constraints for Antarctic bottom water circulation. International Geology Review, 58(1): 49–57. doi: 10.1080/00206814.2015.1055597
    [11] Duan Zongqi, Gao Xing, Liu Qingsong. 2012. Anhysteretic remanent magnetization (ARM) and its application to geoscience. Progress in Geophysics (in Chinese), 27(5): 1929–1938. doi: 10.6038/j.issn.1004-2903.2012.05.013
    [12] Evans M E, Heller F. 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. Amsterdam: Academic Press, 1–299
    [13] Guo Binbin, Wang Weiqiang, Shu Yeqiang, et al. 2020. Observed deep anticyclonic cap over Caiwei Guyot. Journal of Geophysical Research: Oceans, 125(10): e2020JC016254. doi: 10.1029/2020JC016254
    [14] Haley B A, Klinkhammer G P, McManus J. 2004. Rare earth elements in pore waters of marine sediments. Geochimica et Cosmochimica Acta, 68(6): 1265–1279. doi: 10.1016/j.gca.2003.09.012
    [15] He Gaowen, Zhao Zubin, Zhu Kechao. 2001. Cobalt-Rich Crust Resources in the West Pacific (in Chinese). Beijing: Geological Publishing House, 1–92
    [16] Heslop D. 2015. Numerical strategies for magnetic mineral unmixing. Earth-Science Reviews, 150: 256–284. doi: 10.1016/j.earscirev.2015.07.007
    [17] Heslop D, Roberts A P. 2012. A method for unmixing magnetic hysteresis loops. Journal of Geophysical Research: Solid Earth, 117(B3): B03103. doi: 10.1029/2011JB008859
    [18] Hilgen F J, Lourens L J, Van Dam J A, et al. 2012. Chapter 29 - the neogene period. In: Gradstein F M, Ogg J G, Schmitz M D, et al. The Geologic Time Scale. Boston, MA, USA: Elsevier, 923–978, doi: 10.1016/B978-0-444-59425-9.00029-9
    [19] Hodell D A, Venz-Curtis K A. 2006. Late Neogene history of deepwater ventilation in the Southern Ocean. Geochemistry, 7(9): Q09001. doi: 10.1029/2005gc001211
    [20] Jansen J H F, Kuijpers A, Troelstra S R. 1986. A Mid-Brunhes climatic event: long-term changes in global atmosphere and ocean circulation. Science, 232(4750): 619–622. doi: 10.1126/science.232.4750.619
    [21] Jouzel J, Masson-Delmotte V, Cattani O, et al. 2007. Orbital and millennial Antarctic climate variability over the past 800, 000 years. Science, 317(5839): 793–796. doi: 10.1126/science.1141038
    [22] Kawabe M, Fujio S. 2010. Pacific Ocean circulation based on observation. Journal of Oceanography, 66(3): 389–403. doi: 10.1007/s10872-010-0034-8
    [23] Kemp A E S, Grigorov I, Pearce R B, et al. 2010. Migration of the Antarctic polar front through the mid-Pleistocene transition: evidence and climatic implications. Quaternary Science Reviews, 29(17-18): 1993–2009. doi: 10.1016/j.quascirev.2010.04.027
    [24] Li Jinhua, Liu Yan, Liu Shuangchi, et al. 2020. Classification of a complexly mixed magnetic mineral assemblage in Pacific Ocean surface sediment by electron microscopy and supervised magnetic unmixing. Frontiers in Earth Science, 8: 609058. doi: 10.3389/feart.2020.609058
    [25] Lin Zhen, Yi Liang, Wang Haifeng, et al. 2019. Rock magnetism of deep-sea sediments at Caiwei Guyot, Magellan seamounts of Northwest Pacific and its significance to abyssal environmental changes. Chinese Journal of Geophysics (in Chinese), 62(8): 3067–3077. doi: 10.6038/cjg2019M0526
    [26] Lisiecki L E, Raymo M E. 2005. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1): PA1003. doi: 10.1029/2004PA001071
    [27] Liu Suzhen, Deng Chenglong, Xiao Jule, et al. 2015. Insolation driven biomagnetic response to the Holocene warm period in semi-arid East Asia. Scientific Reports, 5(1): 8001. doi: 10.1038/srep08001
    [28] Liu Qian, Huo Yingyi, Wu Yuehong, et al. 2019. Bacterial community on a Guyot in the northwest Pacific Ocean influenced by physical dynamics and environmental variables. Journal of Geophysical Research: Biogeosciences, 124(9): 2883–2897. doi: 10.1029/2019jg005066
    [29] Loulergue L, Schilt A, Spahni R, et al. 2008. Orbital and millennial-scale features of atmospheric CH4 over the past 800, 000 years. Nature, 453(7193): 383–386. doi: 10.1038/nature06950
    [30] Lüthi D, Le Floch M, Bereiter B, et al. 2008. High-resolution carbon dioxide concentration record 650, 000–800, 000 years before present. Nature, 453(7193): 379–382. doi: 10.1038/nature06949
    [31] Maher B A. 1988. Magnetic properties of some synthetic sub-micron magnetites. Geophysical Journal, 94(1): 83–96. doi: 10.1111/j.1365-246X.1988.tb03429.x
    [32] Mix A C, Pisias N G, Rugh W, et al. 1995. Benthic foraminifer stable isotope record from Site 849 (0–5 Ma): local and global climate changes. In: Proceedings of the Ocean Drilling Program, Volume 138 Scientific Results. College State, TX, USA: Ocean Drilling Program, 371–412
    [33] Oldfield F. 2013. Mud and magnetism: records of late Pleistocene and Holocene environmental change recorded by magnetic measurements. Journal of Paleolimnology, 49(3): 465–480. doi: 10.1007/s10933-012-9648-8
    [34] Paillard D. 1998. The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature, 391(6665): 378–381. doi: 10.1038/34891
    [35] Past Interglacials Working Group of PAGES. 2016. Interglacials of the last 800, 000 years. Reviews of Geophysics, 54(1): 162–219. doi: 10.1002/2015RG000482
    [36] Pollard D, DeConto R M. 2009. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature, 458(7236): 329–332. doi: 10.1038/nature07809
    [37] Roberts A P, Heslop D, Zhao Xiang, et al. 2014. Understanding fine magnetic particle systems through use of first-order reversal curve diagrams. Reviews of Geophysics, 52(4): 557–602. doi: 10.1002/2014rg000462
    [38] Roberts A P, Pike C R, Verosub K L. 2000. First-order reversal curve diagrams: a new tool for characterizing the magnetic properties of natural samples. Journal of Geophysical Research: Solid Earth, 105(B12): 28461–28475. doi: 10.1029/2000jb900326
    [39] Roberts A P, Tauxe L, Heslop D, et al. 2018. A critical appraisal of the “Day” diagram. Journal of Geophysical Research: Solid Earth, 123(4): 2618–2644. doi: 10.1002/2017jb015247
    [40] Stepashko A A. 2008. Spreading cycles in the Pacific Ocean. Oceanology, 48(3): 401–408. doi: 10.1134/S0001437008030120
    [41] Sun Youbin, Clemens S C, An Zhisheng, et al. 2006. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. Quaternary Science Reviews, 25(1−2): 33–48. doi: 10.1016/j.quascirev.2005.07.005
    [42] Sun Qiqi, Song Jinming, Li Xuegang, et al. 2020. Bacterial vertical and horizontal variability around a deep seamount in the Tropical Western Pacific Ocean. Marine Pollution Bulletin, 158: 111419. doi: 10.1016/j.marpolbul.2020.111419
    [43] Talley L D. 2008. Freshwater transport estimates and the global overturning circulation: shallow, deep and throughflow components. Progress in Oceanography, 78(4): 257–303. doi: 10.1016/j.pocean.2008.05.001
    [44] Tauxe L, Butler R F, Van Der Voo, R, et al. 2010. Essentials of Paleomagnetism. Berkeley: University of California Press, 1–512
    [45] Tzedakis P C, Crucifix M, Mitsui T, et al. 2017. A simple rule to determine which insolation cycles lead to interglacials. Nature, 542(7642): 427–432. doi: 10.1038/nature21364
    [46] Verwey E J W. 1939. Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures. Nature, 144(3642): 327–328. doi: 10.1038/144327b0
    [47] Wang Fenlian, He Gaowen, Wang Haifeng, et al. 2016a. Geochemistry of rare earth elements in a core from Mariana Trench and its significance. Marine Geology & Quaternary Geology (in Chinese), 36(4): 67–75. doi: 10.16562/j.cnki.0256-1492.2016.04.008
    [48] Wang Yanmei, Zhang Huodai, Liu Jihua, et al. 2016b. Abundances and spatial distributions of associated useful elements in Co-rich crusts from Caiwei Seamount in Magellan Seamounts. Marine Geology & Quaternary Geology (in Chinese), 36(2): 65–74. doi: 10.16562/j.cnki.0256-1492.2016.02.008
    [49] Wei Zhenquan, Deng Xiguang, Zhu Kechao, et al. 2017. Characteristic of substrate rocks of Caiwei Seamounts in the west Pacific Ocean. Marine Geology Frontiers (in Chinese), 33(12): 1–6. doi: 10.16028/j.1009-2722.2017.12001
    [50] Wessel P. 1997. Sizes and ages of seamounts using remote sensing: implications for intraplate volcanism. Science, 277(5327): 802–805. doi: 10.1126/science.277.5327.802
    [51] Wessel P, Lyons S. 1997. Distribution of large Pacific seamounts from Geosat/ERS-1: implications for the history of intraplate volcanism. Journal of Geophysical Research: Solid Earth, 102(B10): 22459–22475. doi: 10.1029/97JB01588
    [52] Xiao Chunhui, Wang Yonghong, Tian Jiwei, et al. 2020. Mineral composition and geochemical characteristics of sinking particles in the Challenger Deep, Mariana Trench: implications for provenance and sedimentary environment. Deep Sea Research Part I: Oceanographic Research Papers, 157: 103211. doi: 10.1016/j.dsr.2019.103211
    [53] Xu Zhaokai, Li Tiegang, Clift P D, et al. 2015. Quantitative estimates of Asian dust input to the western Philippine Sea in the mid-late Quaternary and its potential significance for paleoenvironment. Geochemistry, 16(9): 3182–3196. doi: 10.1002/2015gc005929
    [54] Xu Peng, Liu Feng, Ding Zhongjun, et al. 2016. A new species of the thorid genus Paralebbeus Bruce & Chace, 1986 (Crustacea: Decapoda: Caridea) from the deep sea of the Northwestern Pacific Ocean. Zootaxa, 4085(1): 119–126. doi: 10.11646/zootaxa.4085.1.5
    [55] Yamazaki T. 2009. Environmental magnetism of Pleistocene sediments in the North Pacific and Ontong-Java Plateau: temporal variations of detrital and biogenic components. Geochemistry, 10(7): Q07Z04. doi: 10.1029/2009GC002413
    [56] Yamazaki T. 2012. Paleoposition of the Intertropical Convergence Zone in the eastern Pacific inferred from glacial-interglacial changes in terrigenous and biogenic magnetic mineral fractions. Geology, 40(2): 151–154. doi: 10.1130/g32646.1
    [57] Yang Zifei, Qian Qiankun, Chen Min, et al. 2020. Enhanced but highly variable bioturbation around seamounts in the northwest Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 156: 103190. doi: 10.1016/j.dsr.2019.103190
    [58] Yi Liang, Wang Haifeng, Deng Xiguang, et al. 2021. Geochronology and geochemical properties of Mid-Pleistocene sediments on the Caiwei Guyot in the Northwest Pacific imply a surface-to-deep linkage. Journal of Marine Science and Engineering, 9(3): 253. doi: 10.3390/jmse9030253
    [59] Yi Liang, Xu Dong, Jiang Xingyu, et al. 2020. Magnetostratigraphy and authigenic 10Be/9Be dating of Plio-Pleistocene abyssal surficial sediments on the southern slope of Mariana Trench and sedimentary processes during the Mid-Pleistocene Transition. Journal of Geophysical Research: Oceans, 125(8): e2020JC016250. doi: 10.1029/2020jc016250
    [60] Yin Qiuzhen. 2013. Insolation-induced mid-Brunhes transition in Southern Ocean ventilation and deep-ocean temperature. Nature, 494(7436): 222–225. doi: 10.1038/nature11790
    [61] Zachos J, Pagani M, Sloan L, et al. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292(5517): 686–693. doi: 10.1126/science.1059412
    [62] Zhai Fangguo, Gu Yanzhen. 2020. Abyssal circulation in the Philippine Sea. Journal of Ocean University of China, 19(2): 249–262. doi: 10.1007/s11802-020-4241-7
    [63] Zhao Bin, Wei Zhenquan, Yang Yong, et al. 2020. Sedimentary characteristics and the implications of cobalt-rich crusts resources at Caiwei Guyot in the Western Pacific Ocean. Marine Georesources & Geotechnology, 38(9): 1037–1045. doi: 10.1080/1064119X.2019.1648615
  • 加载中
  • 文章访问数:  33
  • HTML全文浏览量:  15
  • 被引次数: 0
  • 收稿日期:  2021-04-23
  • 录用日期:  2021-06-16
  • 网络出版日期:  2021-09-10