Radial velocity of ocean surface current estimated from SAR Doppler frequency measurements—a case study of Kuroshio in the East China Sea

Lihua Wang Benwei Shi Yunxuan Zhou Hui Sheng Yanghua Gao Li Fan Ziheng Yang

Lihua Wang, Benwei Shi, Yunxuan Zhou, Hui Sheng, Yanghua Gao, Li Fan, Ziheng Yang. Radial velocity of ocean surface current estimated from SAR Doppler frequency measurements—a case study of Kuroshio in the East China Sea[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1883-2
Citation: Lihua Wang, Benwei Shi, Yunxuan Zhou, Hui Sheng, Yanghua Gao, Li Fan, Ziheng Yang. Radial velocity of ocean surface current estimated from SAR Doppler frequency measurements—a case study of Kuroshio in the East China Sea[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1883-2

doi: 10.1007/s13131-021-1883-2

Radial velocity of ocean surface current estimated from SAR Doppler frequency measurements—a case study of Kuroshio in the East China Sea

Funds: The National Natural Science Foundation of China under contract Nos 42176174 and 41706196; the Open Research Fund of the State Key Laboratory of Estuarine and Coastal Research, East China Normal University, under contract No. SKLEC-KF202104; the National Science Foundation for Post-doctoral Scientists of China under contract No. 2020M683258; the Chongqing Technology Innovation and Application Development Special Project under contract No. cstc2020jscx-msxmX0193; and the Sichuan Science and Technology Program under contract No. 2018JY0484.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Bathymetry of the East China Sea. The blue line is a schematic representation of the mean path of the Kuroshio, according to (Ma et al., 2009; Qiu and Lukas, 1996; Zhuang et al., 2020). Isobaths are shown for 50 m, 100 m, 300 m, 500 m, 1000 m, 1 500 m, and 1 800 m.

    Figure  2.  Location of advanced synthetic aperture radar (ASAR) images and surface drifter data. The rectangles show the areas covered by the ASAR images: green and black denote images from ascending and descending orbits, respectively. The dots represent drifter data: red and blue denote data 1-h and 6-h resolutions, respectively.

    Figure  3.  The synthetic aperture radar (SAR) normalized radarcross section (NRCS) image on July 26, 2007 (a), and May 28, 2008 (b).

    Figure  4.  Flow chart of the inversion method for calculating ocean current from synthetic aperture radar (SAR) data based on Doppler frequency theory.

    Figure  5.  The Doppler centroid grid fDc (a), fDp (b) and fDca (c) from ascending SAR scene on July 26, 2007; and fDc (d), fDp (e) and fDca (f) from SAR descending scene on May 28, 2008.

    Figure  6.  The geophysical Doppler frequency anomaly fg on July 26, 2007 (a), and on May 28, 2008 (b).

    Figure  7.  The radial Doppler velocities derived from ASAR scenes on July 26, 2007 (a), and on May 28, 2008 (b). Land is shown in white.

    Figure  8.  The radial Doppler velocities from the SAR scenes on July 26, 2007 (a), and on May 28, 2008 (b) with the corresponding MOB products superimposed as arrows (arrow length indicates strength); and transects of SAR range velocity and MOB velocity on July 26, 2007 and May 28, 2008 for the Kuroshio central flow (c), and for the Kuroshio Counter Current (d).

    Figure  9.  Error analysis of the radial velocities. a. Comparing SAR-derived data with MOB products. Comparing SAR-derived data with GLD data, and b. the time window of 24 h, and c. the time window of 12 h.

    Figure  10.  Composite of SAR radial velocities derived from an ascending scene acquired on 26 July 2007 (middle), an ascending scene acquired on 2 August 2011 (upper right), and a descending scene acquired on 28 May 2008 (lower left).

    Table  1.   ENVISAT advanced synthetic aperture radar (ASAR) wide swath mode (WSM) products description

    Acquisition time (UTC)PolarizationDoppler centroid numbers (range by azimuth)OrbitTrackPass
    2007-07-26 13:29:03VV100×11528249139ascending
    2007-11-13 01:22:38VV100×7029816203descending
    2007-11-29 01:19:42VV100×7030045432descending
    2007-12-02 01:25:27VV100×7030088475descending
    2007-12-18 01:22:36VV100×7030317203descending
    2008-01-31 01:39:52VV100×7030947332descending
    2008-05-28 01:31:19HH100×5432636017descending
    2011-08-02 13:19:29VV100×6749277125ascending
    下载: 导出CSV

    Table  2.   The RMS variation of Doppler frequency

    Acquisition date for SAR scenefDcRMS for the Doppler frequency anomaly/Hz
    fDcafDcafwferrfg
    July 26, 200797.5617.7016.4214.32
    November 13, 2007109.5515.8014.8013.65
    November 29, 2007104.5610.7210.129.26
    December 2, 2007110.1315.5314.4913.41
    December 18, 2007113.6416.2714.9713.03
    January 31, 2008112.589.228.515.91
    May 28, 2008101.8912.2511.8010.82
    August 2, 201189.4418.4216.4814.22
    下载: 导出CSV
  • [1] Ambe D, Imawaki S, Uchida H, et al. 2004. Estimating the Kuroshio axis south of Japan using combination of satellite altimetry and drifting buoys. Journal of Oceanography, 60(2): 375–382. doi: 10.1023/B:JOCE.0000038343.31468.fe
    [2] Chapron B, Collard F, Ardhuin F. 2005. Direct measurements of ocean surface velocity from space: Interpretation and validation. Journal of Geophysical Research: Oceans, 110(C7): C07008
    [3] Chapron B, Collard F, Kerbaol V. 2004. Satellite synthetic aperture radar sea surface Doppler measurements. In: Proceedings of the 2nd Workshop on Coastal and Marine Applications of SAR. Svalbard, Norway: ESA Special Publication
    [4] Deng Lijing, Wei Hao, Wang Jianing. 2015. Vertical distribution of the Kuroshio velocity in the Pollution Nagasaki section and its formative mechanism. Marine Science Bulletin, 17(1): 26–39
    [5] Essen H H, Gurgel K W, Schlick T. 2000. On the accuracy of current measurements by means of HF radar. IEEE Journal of Oceanic Engineering, 25(4): 472–480. doi: 10.1109/48.895354
    [6] European Space Agency. 2007. Envisat ASAR Product Handbook. European Space Agency. Issue 2.2. 218–559, [2007-2-27/2021-4-8]. https://earth.esa.int/eogateway/search?text=&category=Document%20library&filter=envisat&subFilter=product%20handbook
    [7] Goldstein R M, Zebker H A, Barnett T P. 1989. Remote sensing of ocean currents. Science, 246(4935): 1282–1285. doi: 10.1126/science.246.4935.1282
    [8] Graber H C, Thompson D R, Carande R E. 1996. Ocean surface features and currents measured with synthetic aperture radar interferometry and HF radar. Journal of Geophysical Research: Oceans, 101(C11): 25813–25832. doi: 10.1029/96JC02241
    [9] Guan Bingxian. 1979. Some results from the study of the variation of the Kuroshio in the East China Sea. Oceanologia et Limnologia Sinica (in Chinese), 10(4): 297–306
    [10] Guo Xinyu, Miyazawa Y, Yamagata T. 2006. The Kuroshio onshore intrusion along the shelf break of the East China Sea: The origin of the Tsushima Warm Current. Journal of Physical Oceanography, 36(12): 2205–2231. doi: 10.1175/JPO2976.1
    [11] Han Shuzong, Yang Hua, Xue Wenhu, et al. 2017. The study of single station inverting the sea surface current by HF ground wave radar based on adjoint assimilation technology. Journal of Ocean University of China, 16(3): 383–388. doi: 10.1007/s11802-017-3189-8
    [12] Hansen M W, Collard F, Dagestad K F, et al. 2011a. Retrieval of sea surface range velocities from Envisat ASAR Doppler centroid measurements. IEEE Transactions on Geoscience and Remote Sensing, 49(10): 3582–3592. doi: 10.1109/TGRS.2011.2153864
    [13] Hansen M W, Johannessen J A, Dagestad K F, et al. 2011b. Monitoring the surface inflow of Atlantic Water to the Norwegian Sea using Envisat ASAR. Journal of Geophysical Research: Oceans, 116(C12): C12008. doi: 10.1029/2011JC007375
    [14] He Yijun. 2000. Ocean wave imaging mechanism by imaging radar. Science in China Series D: Earth Sciences, 43(6): 587–595. doi: 10.1007/BF02879502
    [15] He Yijun, Yang Xiaobo, Yi Na, et al. 2020. Progress in sea surface current retrieval from spaceborne SAR measurements. Journal of Nanjing University of Information Science and Technology (in Chinese), 12(2): 181–190
    [16] Jia Yongjun, Zhang Youguang, Lin Mingsen. 2013. The numerical simulation of the Kuroshio frontal eddies in the East China Sea using a hybrid coordinate ocean mode. Acta Oceanologica Sinica, 32(5): 31–41. doi: 10.1007/s13131-013-0311-7
    [17] Johannessen J A, Chapron B, Collard F, et al. 2008. Direct ocean surface velocity measurements from space: Improved quantitative interpretation of Envisat ASAR observations. Geophysical Research Letters, 35(22): L22608. doi: 10.1029/2008GL035709
    [18] Johannessen J A, Shuchman R A, Digranes G, et al. 1996. Coastal ocean fronts and eddies imaged with ERS 1 synthetic aperture radar. Journal of Geophysical Research: Oceans, 101(C3): 6651–6667. doi: 10.1029/95JC02962
    [19] Klemas V. 2012. Remote sensing of coastal and ocean currents: An overview. Journal of Coastal Research, 28(3): 576–586. doi: 10.2112/JCOASTRES-D-11-00197.1
    [20] Lehner S, Hoja D, Schulz-Stellenfleth J. 2002. Marine parameters from synergy of optical and radar satellite data. Advances in Space Research, 29(1): 23–32. doi: 10.1016/S0273-1177(01)00623-8
    [21] Li Shuiqing, Liu Baochang, Shen Hui, et al. 2020. Wind wave effects on remote sensing of sea surface currents from SAR. Journal of Geophysical Research: Oceans, 125(7): e2020JC016166
    [22] Lin Hui, Xu Qing, Zheng Quan’an. 2008. An overview on SAR measurements of sea surface wind. Progress in Natural Science, 18(8): 913–919. doi: 10.1016/j.pnsc.2008.03.008
    [23] Liu Baochang, He Yijun, Li Yongkang, et al. 2019. A new azimuth ambiguity suppression algorithm for surface current measurement in coastal waters and rivers with along-track InSAR. IEEE Transactions on Geoscience and Remote Sensing, 57(6): 3148–3165. doi: 10.1109/TGRS.2018.2881958
    [24] Ma Chao, Wu Dexing, Lin Xiaopei. 2009. Variability of surface velocity in the Kuroshio Current and adjacent waters derived from Argos drifter buoys and satellite altimeter data. Chinese Journal of Oceanology and Limnology, 27(2): 208–217. doi: 10.1007/s00343-009-9260-6
    [25] Moiseev A, Johnsen H, Hansen M W, et al. 2020. Evaluation of radial ocean surface currents derived from Sentinel-1 IW Doppler shift using coastal radar and Lagrangian surface drifter observations. Journal of Geophysical Research: Oceans, 125(4): e2019JC015743
    [26] Mouche A A, Collard F, Chapron B, et al. 2012. On the use of Doppler shift for sea surface wind retrieval from SAR. IEEE Transactions on Geoscience and Remote Sensing, 50(7): 2901–2909. doi: 10.1109/TGRS.2011.2174998
    [27] Qiu Bo, Chen Shuiming, Klein P, et al. 2020. Reconstructing upper-ocean vertical velocity field from sea surface height in the presence of unbalanced motion. Journal of Physical Oceanography, 50(1): 55–79. doi: 10.1175/JPO-D-19-0172.1
    [28] Qiu Bo, Lukas R. 1996. Seasonal and interannual variability of the North Equatorial Current, the Mindanao Current, and the Kuroshio along the Pacific western boundary. Journal of Geophysical Research: Oceans, 101(C5): 12315–12330. doi: 10.1029/95JC03204
    [29] Quilfen Y, Chapron B. 2019. Ocean surface wave-current signatures from satellite altimeter measurements. Geophysical Research Letters, 46(1): 253–261. doi: 10.1029/2018GL081029
    [30] Rio M H, Mulet S, Picot N. 2014. Beyond GOCE for the ocean circulation estimate: Synergetic use of altimetry, gravimetry, and in situ data provides new insight into geostrophic and Ekman currents. Geophysical Research Letters, 41(24): 8918–8925. doi: 10.1002/2014GL061773
    [31] Romeiser R. 2005. Current measurements by airborne along-track InSAR: Measuring technique and experimental results. IEEE Journal of Oceanic Engineering, 30(3): 552–569. doi: 10.1109/JOE.2005.857508
    [32] Romeiser R, Suchandt S, Runge H, et al. 2010. First analysis of TerraSAR-X along-track InSAR-Derived current fields. IEEE Transactions on Geoscience and Remote Sensing, 48(2): 820–829. doi: 10.1109/TGRS.2009.2030885
    [33] Romeiser R, Thompson D R. 2000. Numerical study on the along-track interferometric radar imaging mechanism of oceanic surface currents. IEEE Transactions on Geoscience and Remote Sensing, 38(1): 446–458. doi: 10.1109/36.823940
    [34] Krug M, Mouche A, Collard F, et al. 2010. Mapping the Agulhas Current from space: An assessment of ASAR surface current velocities. Journal of Geophysical Research: Oceans, 115(C10): C10026
    [35] Toporkov J V, Brown G S. 2000. Numerical simulations of scattering from time-varying, randomly rough surfaces. IEEE Transactions on Geoscience and Remote Sensing, 38(4): 1616–1625. doi: 10.1109/36.851961
    [36] Wang Lihua, Zhou Yunxuan, Ge Jianzhong, et al. 2014a. Mapping sea surface velocities in the Changjiang coastal zone with advanced synthetic aperture radar. Acta Oceanologica Sinica, 33(11): 141–149. doi: 10.1007/s13131-014-0563-x
    [37] Wang Lihua, Zhou Yunxuan, Zhu Jianrong, et al. 2014b. Deriving Changjiang coastal zone wind from C-band SAR and its application to salinity simulation. Chinese Journal of Oceanology and Limnology, 32(4): 946–957. doi: 10.1007/s00343-014-3253-9
    [38] Yoshida T, Rheem C K. 2015. Time-domain simulation of along-track interferometric SAR for moving ocean surfaces. Sensors, 15(6): 13644–13659. doi: 10.3390/s150613644
    [39] Zhang Canying, Feng Zhigang, Zhang Xiaokun, et al. 2017. Analysis on research progress of Kuroshio. World Sci-Tech R&D (in Chinese), 39(3): 239–249
    [40] Zhuang Zhanpeng, Hui Zhenli, Yang Guangbing, et al. 2020. Principal-component estimates of the Kuroshio Current axis and path based on the mathematical verification between satellite altimeter and drifting buoy data. Acta Oceanologica Sinica, 39(1): 14–24. doi: 10.1007/s13131-019-1523-2
  • 加载中
计量
  • 文章访问数:  24
  • HTML全文浏览量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 录用日期:  2021-07-08
  • 网络出版日期:  2021-09-01

目录

    /

    返回文章
    返回