Oceanic internal solitary waves at the Indonesian submarine wreckage site

Yankun Gong Jieshuo Xie Jiexin Xu Zhiwu Chen Yinghui He Shuqun Cai

Yankun Gong, Jieshuo Xie, Jiexin Xu, Zhiwu Chen, Yinghui He, Shuqun Cai. Oceanic internal solitary waves at the Indonesian submarine wreckage site[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1893-0
Citation: Yankun Gong, Jieshuo Xie, Jiexin Xu, Zhiwu Chen, Yinghui He, Shuqun Cai. Oceanic internal solitary waves at the Indonesian submarine wreckage site[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-021-1893-0

doi: 10.1007/s13131-021-1893-0

Oceanic internal solitary waves at the Indonesian submarine wreckage site

Funds: The Key Research Program of Frontier Sciences, Chinese Academy of Sciences (CAS) under contract No. QYZDJ-SSW-DQC034; the fund of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) under contract No. GML2019ZD0304; the National Natural Science Foundation of China under contract Nos 41521005, 41776007, 41776008 and 91858201; the fund of Chinese Academy of Sciences under contract No. ISEE2021PY01; the Youth Science and Technology Innovation Talent of Guangdong TeZhi Plan under contract No. 2019TQ05H519; the Rising Star Foundation of SCSIO under contract No. NHXX2019WL0201; the Natural Science Foundation of Guangdong Province under contract Nos 2020A1515010495, 2021A1515012538 and 2021A1515011613; the Youth Innovation Promotion Association from CAS under contract No. 2018378.
More Information
  • Figure  1.  Bathymetry around the Indonesia including the Lombok Strait (a), the submarine wreckage location is marked as a magenta star; a satellite image on 25 April 2005 derived from the MODIS (b), in which blue arrows represent wave propagation directions; and numerically-predicted sea surface height gradients ($ \left|\nabla \eta \right| $) at 01:00 UTC on 20 April 2021 (c).

    Figure  2.  Numerically-predicted sea surface height gradients ($ \left|\nabla \eta \right| $) (a) and numerically-predicted isotherms ($ T $) from 28.5°C to 9°C (bending line in b, d and f from top to bottom) with a interval of 1.5°C and wave-induced velocity ($ {U}_{\rm {bc}} $, color shade) along the transect (red dashed line in panel a) at 05:30 UTC on 20 April 2021 (b); c and d are the same as a and b but at 13:30 UTC on 20 April 2021, and e and f are at 21:30 UTC on 20 April 2021. The wreckage site is marked as the magenta star and ISWs on three stages are marked in blue boxes. z represents water depth.

    Figure  3.  Same as Fig. 2, but during the period from 19:30 UTC 20 April to 22:30 UTC 20 April with the time interval of 1.5 h. It characterizes the ISW properties right before and after it passing the wreckage site.

    Table  1.   Parameters in the numerical experiment

    ParameterNotationValue
    Horizontal cell size$ \Delta x $100 m
    Vertical cell size$ \Delta z $10–100 m
    Maximum water depth$ {H}_{\mathrm{m}\mathrm{a}\mathrm{x}} $4 400 m
    Time step$ \Delta t $5 s
    Starting model time$ {T}_{\mathrm{s}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{t}} $00:00 UTC 17 April 2021
    Predicting time$ {T}_{\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{d}} $5 d
    Horizontal eddy viscosity coefficient$ {A}_{h} $10–1 m2/s
    Vertical eddy viscosity coefficient$ {A}_{v} $10–3 m2/s
    Horizontal diffusivity coefficient$ {K}_{h} $10–1 m2/s
    Vertical diffusivity coefficient$ {K}_{v} $10–3 m2/s
    Bottom stress$ {C}_{d} $2.5×10–3
    下载: 导出CSV
  • [1] Aiki H, Matthews J P, Lamb K G. 2011. Modeling and energetics of tidally generated wave trains in the Lombok Strait: impact of the Indonesian Throughflow. Journal of Geophysical Research: Oceans, 116(C3): C03023
    [2] Amante C, Eakins B W. 2009. ETOPO1 arc-minute global relief model: procedures, data sources and analysis. In: NOAA Technical Memorandum NESDIS NGDC-24. Boulder, Colorado: NOAA [2021-07-14] file:///C:/Users/701-zhoujing/AppData/Roaming/SogouExplorer/Download/ETOPO1_1_Arc-Minute_Global_Relief_Model_procedures.pdf
    [3] Jackson C. 2007. Internal wave detection using the moderate resolution imaging spectroradiometer (MODIS). Journal of Geophysical Research: Oceans, 112(C11): C11012. doi: 10.1029/2007JC004220
    [4] Mitnik L, Alpers W, Lim H. 2000. Thermal plumes and internal solitary waves generated in the Lombok Strait studied by ERS SAR. In: ERS-Envisat Symposium. Gothenburg: ESA Publication, 16–20
    [5] Murray S P, Arief D. 1988. Throughflow into the Indian Ocean through the Lombok Strait, January 1985−January 1986. Nature, 333(6172): 444–447. doi: 10.1038/333444a0
    [6] Ningsih N S, Rachmayani R, Hadi S, et al. 2010. Internal waves dynamics in the Lombok Strait studied by a numerical model. International Journal of Remote Sensing and Earth Sciences (IJReSES), 5(1): 17–33
    [7] Ostrovsky L A, Stepanyants Y A. 1989. Do internal solitions exist in the ocean?. Reviews of Geophysics, 27(3): 293–310. doi: 10.1029/RG027i003p00293
    [8] Purwandana A, Cuypers Y, Bouruet-Aubertot P. 2021. Observation of internal tides, nonlinear internal waves and mixing in the Lombok Strait, Indonesia. Continental Shelf Research, 216: 104358. doi: 10.1016/j.csr.2021.104358
    [9] Susanto R D, Mitnik L, Zheng Quan’an. 2005. Ocean internal waves observed in the Lombok Strait. Oceanography, 18(4): 80–87. doi: 10.5670/oceanog.2005.08
    [10] Vitousek S, Fringer O B. 2011. Physical vs. numerical dispersion in nonhydrostatic ocean modeling. Ocean Modelling, 40(1): 72–86
    [11] Zheng Quan’an, Yuan Yeli, Klemas V, et al. 2001. Theoretical expression for an ocean internal soliton synthetic aperture radar image and determination of the soliton characteristic half width. Journal of Geophysical Research: Oceans, 106(C12): 31415–31423. doi: 10.1029/2000JC000726
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  14
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-13
  • 录用日期:  2021-08-17
  • 网络出版日期:  2021-09-07

目录

    /

    返回文章
    返回