Quality evaluation and calibration of the SWIM significant wave height product with buoy data

Jing Ye Yong Wan Yongshou Dai

Jing Ye, Yong Wan, Yongshou Dai. Quality evaluation and calibration of the SWIM significant wave height product with buoy data[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-0210000-00
Citation: Jing Ye, Yong Wan, Yongshou Dai. Quality evaluation and calibration of the SWIM significant wave height product with buoy data[J]. Acta Oceanologica Sinica. doi: 10.1007/s13131-0210000-00

doi: 10.1007/s13131-0210000-00

Quality evaluation and calibration of the SWIM significant wave height product with buoy data

Funds: The National Key R&D Program of China under contract No. 2017YFC1405600; the National Natural Science Foundation of China under contract Nos 61931025, 41974144 and 41976173; the Graduate Innovation Project of China University of Petroleum (East China) under contract No. YCX2021124; the Shandong Provincial Natural Science Foundation, China under contract No. ZR2019MD016.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Location of 64 NDBC buoys selected. (▲less than 50 km offshore, ● greater than 50 km offshore).

    Figure  2.  Flowchart of time-space matching.

    Figure  3.  Scatterplots for SWH comparisons between SWIM and NDBC buoys at different offshore distances with validation parameters and data sizes (dotted line is reference line). a. Less than 50 km offshore and b. greater than 50 km offshore.

    Figure  4.  Scatterplot and comparisons of validation results in different sea states. a. Scatterplot for SWH comparisons between SWIM and NDBC buoys (dotted line is reference line) and b. comparisons of validation parameters and data sizes under different sea states.

    Figure  5.  Scatterplots and comparisons of validation results in different sea states using two calibration methods. Calibration results scatterplot by a. traditional method (dotted line is reference line), b. improved method (dotted line is reference line), and c. comparisons of validation parameters using two methods separately and data sizes in different sea states.

    Figure  6.  Validation results of SWIM SWH product based on buoy data classification. Buoys a. less than 50 km offshore and b. greater than 50 km offshore (to facilitate presentation of results, all REs are 1/50 times the results).

    Table  1.   Basic information of buoys

    Buoy IDLongitudeLatitudeOffshore distance/kmSerial number
    51206154.970°W19.780°N5.45A1
    51201158.117°W21.671°N5.50A2
    4400770.141°W43.525°N6.77A3
    46069120.213°W33.677°N23.65A4
    4102575.363°W35.025°N25.86A5
    46011121.019°W34.956°N29.92A6
    4100880.866°W31.400°N33.59A7
    4400974.702°W38.457°N34.43A8
    46082143.372°W59.681°N37.40A9
    4402573.164°W40.251°N38.13A10
    46028121.905°W35.774°N41.37A11
    46029124.485°W46.143°N41.67A12
    46086118.052°W32.499°N43.68A13
    46084136.102°W56.622°N44.78A14
    46083138.019°W58.268°N48.96A15
    4100479.099°W32.501°N56.79B1
    4400569.128°W43.201°N63.16B2
    4202096.693°W26.968°N67.90B3
    46072172.08851.672°N68.13B4
    4204088.226°W29.208°N75.25B5
    4206063.331°W16.433°N79.16B6
    46047119.506°W32.404°N81.13B7
    4201995.345°W27.910°N88.26B8
    4401474.842°W36.609°N100.57B9
    4400869.248°W40.504°N103.99B10
    46075160.817°W53.983°N105.80B11
    4203986.008°W28.788°N109.11B12
    4406672.644°W39.618°N112.39B13
    4203684.516°W28.501°N119.57B14
    51101162.075°W24.361°N130.72B15
    4205781.422°W16.908°N141.80B16
    46080150.042°W57.947°N143.26B17
    46078152.582°W55.556°N158.91B18
    4101078.485°W28.878°N160.51B19
    46089125.771°W45.925°N171.78B20
    4205684.945°W19.820°N193.92B21
    4205593.941°W22.124°N199.32B22
    4104364.790°W21.030°N231.39B23
    4401166.588°W41.070°N239.24B24
    51003160.625°W19.175°N247.64B25
    46073172.011°W55.009°N256.98B26
    4205967.483°W15.252°N268.69B27
    46070175.183°E55.008°N270.43B28
    51002157.742°W17.043°N272.61B29
    4200385.615°W25.925°N298.36B30
    4205874.548°W14.776°N298.62B31
    4200189.657°W25.942°N298.74B32
    4100274.958°W31.973°N304.83B33
    46066155.009°W52.765°N305.47B34
    51004152.255°W17.533°N322.04B35
    4100172.317°W34.724°N324.03B36
    4200293.646°W26.055°N330.52B37
    51000153.792°W23.528°N351.38B38
    46001147.949°W56.232°N353.55B39
    4104668.384°W23.822°N358.85B40
    46085142.882°W55.883°N418.63B41
    4104771.494°W27.514°N449.00B42
    4104869.573°W31.831°N470.60B43
    4104458.630°W21.582°N500.93B44
    46035177.703°W57.016°N509.45B45
    4104962.938°W27.490°N511.85B46
    46059129.951°W38.094°N599.14B47
    4104053.045°W14.554°N652.81B48
    46006137.397° W40.782°N1284.26B49
    Note: The longitude and latitude range in the table are 0–90°W, 0–90°E, and 0–90°N, and buoys are numbered according to offshore distance, with those shorter than 50 km numbered A and others numbered B.
    下载: 导出CSV

    Table  2.   Wave level table

    Wave levelSWH range/mSea state
    0SWH=0calm-glassy
    1SWH<0.1calm-rippled
    20.1≤SWH<0.5smooth-wavelet
    30.5≤SWH<1.25slight
    41.25≤SWH<2.5moderate
    52.5≤SWH<4.0rough
    64.0≤SWH<6.0very rough
    76.0≤SWH<9.0high
    89.0≤SWH<14.0very high
    914.0≤SWHphenomenal
    下载: 导出CSV

    Table  3.   Validation parameter statistics of SWIM SWH in different sea states

    Sea stateRMSE/mSIRE/%
    slight0.351 80.345 019.09
    moderate0.284 80.148 110.73
    rough0.316 90.100 47.59
    very rough0.360 70.072 95.93
    high0.434 90.059 05.43
    下载: 导出CSV

    Table  4.   Calibration factors of SWIM SWH using traditional calibration method

    abc
    0.014 90.860 00.095 4
    下载: 导出CSV

    Table  5.   Calibration factors of SWIM SWH using improved calibration method

    Sea stateabc
    slight−0.231 01.065 10.092 1
    moderate−0.231 01.591 5−0.363 4
    rough−0.011 40.717 00.905 0
    very rough0.090 2−0.175 73.422 3
    high0.082 4−0.568 36.886 1
    下载: 导出CSV

    Table  6.   Comparisons of validation parameter statistics of SWIM SWH using two calibration methods and data sizes in different sea states

    Sea statePoint collocation
    number
    Raw RMSE/mTraditional calibration RMSE/m
    (Degree of RMSE improvement)
    Improved calibration RMSE/m
    (Degree of RMSE improvement)
    Slight5170.351 80.317 0 (+9.89%)0.127 5 (+63.76%)
    Moderate1 0480.284 80.246 2 (+13.55%)0.199 1 (+30.09%)
    Rough3420.316 90.308 7 (+2.59%)0.244 4 (+22.88%)
    Very rough850.360 70.361 7 (−0.28%)0.299 5 (+16.97%)
    High160.434 90.552 5 (−27.04%)0.232 3 (+46.59%)
    All sea states2 0080.313 50.285 9 (+8.80%)0.198 2 (+36.78%)
    下载: 导出CSV

    Table  7.   Validation parameter statistics of SWIM SWH in different spatiotemporal windows

    Spatiotemporal windowsBuoy collocation numberPoint collocation numberRMSE/mRE/%SI
    25 km
    25 km
    30 min
    60 min
    40 5860.267 411.460.122 2
    401 1730.265 311.380.120 9
    50 km
    50 km
    30 min
    60 min
    642 0300.325 913.070.158 4
    644 0520.324 412.980.157 3
    100 km
    100 km
    30 min
    60 min
    649 0290.484 117.540.243 1
    6418 049 0.484 217.470.243 0
    下载: 导出CSV
  • [1] Brooks R L, Lockwood D W, Hancock D W III. 1990. Effects of islands in the Geosat footprint. Journal of Geophysical Research: Oceans, 95(C3): 2849–2855. doi: 10.1029/JC095iC03p02849
    [2] Chelton D B, Hussey K J, Parke M E. 1981. Global satellite measurements of water vapour, wind speed and wave height. Nature, 294(5841): 529–532. doi: 10.1038/294529a0
    [3] Chen Chuntao, Zhu Jianhua, Lin Mingsen, et al. 2017. Validation of the significant wave height product of HY-2 altimeter. Remote Sensing, 9(10): 1016. doi: 10.3390/rs9101016
    [4] Collard F, Ardhuin F, Chapron B. 2005. Extraction of coastal ocean wave fields from SAR images. IEEE Journal of Oceanic Engineering, 30(3): 526–533. doi: 10.1109/JOE.2005.857503
    [5] Deng X, Featherstone W E, Hwang C, et al. 2002. Estimation of contamination of ERS-2 and POSEIDON satellite radar altimetry close to the coasts of Australia. Marine Geodesy, 25(4): 249–271. doi: 10.1080/01490410214990
    [6] Durrant T H, Greenslade D J M, Simmonds I. 2009. Validation of Jason-1 and Envisat remotely sensed wave heights. Journal of Atmospheric and Oceanic Technology, 26(1): 123–134. doi: 10.1175/2008JTECHO598.1
    [7] Gower J F R. 1996. Intercalibration of wave and wind data from TOPEX/POSEIDON and moored buoys off the west coast of Canada. Journal of Geophysical Research:Oceans, 101(C2): 3817–3829. doi: 10.1029/95JC03281
    [8] Grelier T, Amiot T, Tison C, et al. 2016. The SWIM instrument, a wave scatterometer on CFOSAT mission. In: Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing, China: IEEE, 5793–5796.
    [9] Hauser D, Tison C, Amiot T, et al. 2017. SWIM: the first spaceborne wave scatterometer. IEEE Transactions on Geoscience and Remote Sensing, 55(5): 3000–3014. doi: 10.1109/TGRS.2017.2658672
    [10] Jiang Maofei, Xu Ke, Liu Yalong. 2018. Assessment of reprocessed SSH and SWH measurements derived from HY-2A radar altimeter. In: Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE, 3797–3800.
    [11] Liu Qingxiang, Babanin A V, Guan Changlong, et al. 2016a. Calibration and validation of HY-2 altimeter wave height. Journal of Atmospheric and Oceanic Technology, 33(5): 919–936. doi: 10.1175/JTECH-D-15-0219.1
    [12] Liu Yalong, Xu Ke, Song Yang, et al. 2016b. A preliminary in situ calibration for HY-2A satellite altimeter. In: Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium. Beijing, China: IEEE, 5831–5834.
    [13] Peng Hailong, Lin Mingsen. 2016. Calibration of HY-2A satellite significant wave heights with in situ observation. Acta Oceanologica Sinica, 35(3): 79–83. doi: 10.1007/s13131-015-0758-9
    [14] Queffeulou P. 2003. Validation of ENVISAT RA-2 and JASON-1 altimeter wind and wave measurements. In: Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium. Toulouse, France: IEEE, 2987–2989.
    [15] State Oceanic Administration. 2008. GB/T 12763.2-2007 Specifications for oceanographic survey—part 2: marine hydrographic observation (in Chinese). Beijing: Standards Press of China, 12.
    [16] Suauet R R, Tourain C, Tison C, et al. 2018. The Swim instrument, towards the launch. In: Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE, 975–978.
    [17] Wan Yong, Zhang Jie, Meng Junmin, et al. 2015. Exploitable wave energy assessment based on ERA-Interim reanalysis data—A case study in the East China Sea and the South China Sea. Acta Oceanologica Sinica, 34(9): 143–155. doi: 10.1007/s13131-015-0641-8
    [18] Wang He, Wang Jing, Zhu Jianhua, et al. 2018. Calibration and validation of Hy-2A derived significant wave height using triple collocation. In: Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium. Valencia, Spain: IEEE, 7609–7612.
    [19] Xu Xiyu, Xu Ke, Shen Hua, et al. 2016. Sea surface height and significant wave height calibration methodology by a GNSS buoy campaign for HY-2A altimeter. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(11): 5252–5261. doi: 10.1109/JSTARS.2016.2584626
    [20] Xu Yuan, Yang Jingsong, Zheng Gang, et al. 2014. Calibration and verification of sea surface wind speed from satellite altimeters. Haiyang Xuebao, 36(7): 125–132
    [21] Yang Jungang, Zhang Jie. 2019. Validation of Sentinel-3A/3B satellite altimetry wave heights with buoy and Jason-3 data. Sensors, 19(13): 2914. doi: 10.3390/s19132914
    [22] Yang Le, Lin Mingsen, Zhang Youguang, et al. 2010. Improving the quality of JASON-1 altimetry data by waveform retracking in coastal waters off China. Haiyang Xuebao, 32(6): 91–101
    [23] Young I R, Zieger S, Babanin A V. 2011. Global trends in wind speed and wave height. Science, 332(6028): 451–455. doi: 10.1126/science.1197219
  • 加载中
计量
  • 文章访问数:  10
  • HTML全文浏览量:  3
  • 被引次数: 0
出版历程
  • 网络出版日期:  2021-09-13

目录

    /

    返回文章
    返回