Multi-proxy reconstructions of hydrological changes from continental shelf sediments in the northern South China Sea during the interval 9 200–6 200 cal a BP

Chao Huang Xiaoxu Qu Lihui Wang Yuhan Xie Yongyi Luo Fajin Chen Yin Yang

Chao Huang, Xiaoxu Qu, Lihui Wang, Yuhan Xie, Yongyi Luo, Fajin Chen, Yin Yang. Multi-proxy reconstructions of hydrological changes from continental shelf sediments in the northern South China Sea during the interval 9 200–6 200 cal a BP[J]. Acta Oceanologica Sinica, 2023, 42(9): 53-61. doi: 10.1007/s13131-023-2155-0
Citation: Chao Huang, Xiaoxu Qu, Lihui Wang, Yuhan Xie, Yongyi Luo, Fajin Chen, Yin Yang. Multi-proxy reconstructions of hydrological changes from continental shelf sediments in the northern South China Sea during the interval 9 200–6 200 cal a BP[J]. Acta Oceanologica Sinica, 2023, 42(9): 53-61. doi: 10.1007/s13131-023-2155-0

doi: 10.1007/s13131-023-2155-0

Multi-proxy reconstructions of hydrological changes from continental shelf sediments in the northern South China Sea during the interval 9 200–6 200 cal a BP

Funds: The National Natural Science Foundation of China under contract No. 42001078; the College Student Innovation and Training Project of Guangdong Ocean University under contract No. S20211056601; the Guangdong Natural Science Foundation of China under contract No. 2021A1515011157; the Innovative Team Project of Guangdong Universities under contract No. 2019KCXTF021; the First-class Discipline Plan of Guangdong Province under contract Nos 080503032101 and 231420003; the Marine Science Research Team Project of Guangdong Ocean University under contract No. 002026002004.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  Map of the study area showing the location of Core HKA-1.

    Figure  2.  Bayesian age-depth model for Core HKA-1. acc.: accumulative; mem.: memory.

    Figure  3.  The photograph of Core HKA-1.

    Figure  4.  Temporal variations in multiple proxies in Core HKA-1.

    Figure  5.  Comparison between related records: CIA values in Core HKA-1 (A); Ti contents in Core HKA-1 (B); clay contents in Core HKA-1 (C); Ti contents from Huguangyan Lake (Yancheva et al., 2007) (D); magnetic susceptibility from Huguangyan Lake (Yancheva et al., 2007) (E); stalagmite δ18O record from Dongge Cave (Dykoski et al., 2005) (F); sea level change in South China (Zong, 2004) (G).

    Figure  6.  Comparison between various paleoclimate records: CIA values in Core HKA-1 (A); Ti contents in Core HKA-1 (B); clay contents in Core HKA-1 (C); tropical Pacific sea surface temperature (SST) gradient (Koutavas and Joanides, 2012) (D); Northern-Southern hemisphere temperature gradients (McGee et al., 2014) (E).

    CIA: chemical index of alteration

    Table  1.   Details and Asian summer monsoon 14C dates of the 5 shell samples from Core HKA-1

    Sample code Depth/cm Material Conventional age/(a BP) Error (2 $\sigma $) Calibrated age/(a BP) Error (2 $\sigma $)
    HKA-1-17 17 shell 5 960 56 6 336 181
    HKA-1-26 26 shell 6 020 56 6 393.5 183.5
    HKA-1-35 35 shell 6 280 56 6 675 200
    HKA-1-96 96 shell 7 570 56 7 992 173
    HKA-1-189 189 shell 8 280 56 8 789.5 207.5
    下载: 导出CSV
  • An Zhisheng, Porter S C, Kutzbach J E, et al. 2000. Asynchronous Holocene optimum of the East Asian monsoon. Quaternary Science Reviews, 19(8): 743–762. doi: 10.1016/S0277-3791(99)00031-1
    Arnaud F, Révillon S, Debret M, et al. 2012. Lake Bourget regional erosion patterns reconstruction reveals Holocene NW European Alps soil evolution and paleohydrology. Quaternary Science Reviews, 51: 81–92. doi: 10.1016/J.QUASCIREV.2012.07.025
    Barker S, Broecker W, Clark E, et al. 2007. Radiocarbon age offsets of foraminifera resulting from differential dissolution and fragmentation within the sedimentary bioturbated zone. Paleoceanography, 22(2): PA2205. doi: 10.1029/2006PA001354
    Blaauw M, Christen J A. 2011. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6(3): 457–474. doi: 10.1214/11-BA618
    Boulay S, Colin C, Trentesaux A, et al. 2007. Sedimentary responses to the Pleistocene climatic variations recorded in the South China Sea. Quaternary Research, 68(1): 162–172. doi: 10.1016/J.YQRES.2007.03.004
    Brass G W. 1975. The effect of weathering on the distribution of strontium isotopes in weathering profiles. Geochimica et Cosmochimica Acta, 39(12): 1647–1653. doi: 10.1016/0016-7037(75)90086-1
    Chang C P, Zhang Yongsheng, Li T. 2000. Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: Meridional structure of the monsoon. Journal of Climate, 13(24): 4326–4340. doi: 10.1175/1520-0442(2000)013<4326:IAIVOT>2.0.CO;2
    Chiang J C H, Fung I Y, Wu Chihua, et al. 2015. Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quaternary Science Reviews, 108: 111–129. doi: 10.1016/J.QUASCIREV.2014.11.009
    Clift P D, Wan Shiming, Blusztajn J. 2014. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: a review of competing proxies. Earth-Science Reviews, 130: 86–102. doi: 10.1016/J.EARSCIREV.2014.01.002
    Condie K C, Dengate J, Cullers R L. 1995. Behavior of rare earth elements in a paleoweathering profile on granodiorite in the Front Range, Colorado, USA. Geochimica et Cosmochimica Acta, 59(2): 279–294. doi: 10.1016/0016-7037(94)00280-Y
    Dinakaran J, Krishnayya N S R. 2011. Variations in total organic carbon and grain size distribution in ephemeral river sediments in western India. International Journal of Sediment Research, 26(2): 239–246. doi: 10.1016/S1001-6279(11)60090-5
    Ding Yihui, Wang Zunya, Sun Ying. 2008. Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: Observed evidences. International Journal of Climatology, 28(9): 1139–1161. doi: 10.1002/JOC.1615
    Duan Zongqi, Liu Qingsong, Yang Xiaoqiang, et al. 2014. Magnetism of the Huguangyan Maar Lake sediments, Southeast China and its paleoenvironmental implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 395: 158–167,
    Dykoski C A, Edwards R L, Cheng Hai, et al. 2005. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth and Planetary Science Letters, 233(1–2): 71–86,
    Gao Shu, Liu Yunling, Yang Yang, et al. 2015. Evolution status of the distal mud deposit associated with the Pearl River, northern South China Sea continental shelf. Journal of Asian Earth Sciences, 114: 562–573. doi: 10.1016/j.jseaes.2015.07.024
    Higginson M J, Altabet M A, Murray D W, et al. 2004. Geochemical evidence for abrupt changes in relative strength of the Arabian monsoons during a stadial/interstadial climate transition. Geochimica et Cosmochimica Acta, 68(19): 3807–3826. doi: 10.1016/j.gca.2004.03.015
    Hu Zengzhen. 1997. Interdecadal variability of summer climate over East Asia and its association with 500 hPa height and global sea surface temperature. Journal of Geophysical Research: Atmospheres, 102(D16): 19403–19412. doi: 10.1029/97JD01052
    Hu Dengke, Böning P, Köhler C M, et al. 2012. Deep sea records of the continental weathering and erosion response to East Asian monsoon intensification since 14 ka in the South China Sea. Chemical Geology, 326–327: 1–18,
    Huang Chao, Kong Deming, Chen Fajin, et al. 2021. Multi-proxy reconstructions of climate change and human impacts over the past 7 000 years from an archive of continental shelf sediments off eastern Hainan Island, China. Frontiers in Earth Science, 9: 663634. doi: 10.3389/FEART.2021.663634
    Huang Jie, Li Anchun, Wan Shiming. 2011. Sensitive grain-size records of Holocene East Asian summer monsoon in sediments of northern South China Sea slope. Quaternary Research, 75(3): 734–744. doi: 10.1016/J.YQRES.2011.03.002
    Huang Ronghui, Sun Fengying. 1992. Impacts of the tropical western pacific on the East Asian summer monsoon. Journal of the Meteorological Society of Japan. Ser. II, 70(1B): 243–256. doi: 10.2151/JMSJ1965.70.1B_243
    Huang Jie, Wan Shiming, Xiong Zhifang, et al. 2016. Geochemical records of Taiwan-sourced sediments in the South China Sea linked to Holocene climate changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 871–881,
    Huang Chao, Zeng Ti, Ye Feng, et al. 2019. Solar-forcing-induced spatial synchronisation of the East Asian summer monsoon on centennial timescales. Palaeogeography, Palaeoclimatology, Palaeoecology, 514: 536–549,
    IPCC. 2021. The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York, NY: Cambridge University Press, 2391.
    Ishfaq A M, Pattan J N, Matta V M, et al. 2013. Variation of paleo-productivity and terrigenous input in the Eastern Arabian Sea during the past 100 ka. Journal of the Geological Society of India, 81(5): 647–654. doi: 10.1007/S12594-013-0086-7
    Jia Guodong, Bai Yang, Yang Xiaoqiang, et al. 2015. Biogeochemical evidence of Holocene East Asian summer and winter monsoon variability from a tropical maar lake in southern China. Quaternary Science Reviews, 111: 51–61. doi: 10.1016/J.QUASCIREV.2015.01.002
    Koutavas A, Joanides S. 2012. El Niño–southern oscillation extrema in the Holocene and last glacial maximum. Paleoceanography, 27(4): PA4208. doi: 10.1029/2012PA002378
    Kronberg B I, Nesbitt H W, Lam W W. 1986. Upper Pleistocene Amazon deep-sea fan muds reflect intense chemical weathering of their mountainous source lands. Chemical Geology, 54(3–4): 283–294,
    Latimer J C, Filippelli G M. 2001. Terrigenous input and paleoproductivity in the Southern Ocean. Paleoceanography, 16(6): 627–643. doi: 10.1029/2000PA000586
    Li Pingyuan, Li Mingkun, Gan Huayang, et al. 2021. A preliminary study on sediment records of possible typhoon in the northern South China Sea during the past 6 500 years. The Holocene, 31(7): 1221–1228. doi: 10.1177/09596836211003229
    Li Jingrui, Liu Shengfa, Feng Xiuli, et al. 2017. Major and trace element geochemistry of the mid-Bay of Bengal surface sediments: implications for provenance. Acta Oceanologica Sinica, 36(3): 82–90. doi: 10.1007/s13131-017-1041-z
    Li Xianhua, Wei Gangjian, Shao Lei, et al. 2003. Geochemical and Nd isotopic variations in sediments of the South China Sea: a response to Cenozoic tectonism in SE Asia. Earth and Planetary Science Letters, 211(3–4): 207–220,
    Li Gang, Yan Wen, Zhong Lifeng, et al. 2015. Provenance of heavy mineral deposits on the northwestern shelf of the South China Sea, evidence from single-mineral chemistry. Marine Geology, 363: 112–124. doi: 10.1016/j.margeo.2015.01.015
    Liu Jianbao, Chen Jianhui, Selvaraj K, et al. 2014a. Chemical weathering over the last 1 200 years recorded in the sediments of Gonghai Lake, Lvliang Mountains, North China: a high-resolution proxy of past climate. Boreas, 43(4): 914–923. doi: 10.1111/BOR.12072
    Liu Caicai, Deng Chenglong. 2014. The effect of weathering on the grain-size distribution of red soils in south-eastern China and its climatic implications. Journal of Asian Earth Sciences, 94: 94–104. doi: 10.1016/J.JSEAES.2014.08.027
    Liu Yunling, Gao Shu, Wang Yaping, et al. 2014b. Distal mud deposits associated with the Pearl River over the northwestern continental shelf of the South China Sea. Marine Geology, 347: 43–57. doi: 10.1016/j.margeo.2013.10.012
    Liu Zhengyu, Lu Zhengyao, Wen Xinyu, et al. 2014c. Evolution and forcing mechanisms of El Niño over the past 21, 000 years. Nature, 515(7528): 550–553. doi: 10.1038/NATURE13963
    Liu Shengfa, Shi Xuefa, Liu Yanguang, et al. 2011. Environmental record from the mud area on the inner continental shelf of the East China Sea since the mid-Holocene. Acta Oceanologica Sinica, 30(4): 43–52. doi: 10.1007/s13131-011-0132-5
    Liu Jianguo, Xiang Rong, Kao S J, et al. 2016. Sedimentary responses to sea-level rise and Kuroshio Current intrusion since the Last Glacial Maximum: Grain size and clay mineral evidence from the northern South China Sea slope. Palaeogeography, Palaeoclimatology, Palaeoecology, 450: 111–121,
    Lu Jiayi, Yang Huan, Griffiths M L, et al. 2021. Asian monsoon evolution linked to Pacific temperature gradients since the Late Miocene. Earth and Planetary Science Letters, 563: 116882. doi: 10.1016/J.EPSL.2021.116882
    McGee D, Donohoe A, Marshall J, et al. 2014. Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth and Planetary Science Letters, 390: 69–79. doi: 10.1016/J.EPSL.2013.12.043
    Nesbitt H W, Markovics G, Price R C. 1980. Chemical processes affecting alkalis and alkaline earths during continental weathering. Geochimica et Cosmochimica Acta, 44(11): 1659–1666. doi: 10.1016/0016-7037(80)90218-5
    Nesbitt H W, Young G M. 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715–717. doi: 10.1038/299715A0
    Rao Zhiguo, Li Yunxia, Zhang Jiawu, et al. 2016. Investigating the long-term palaeoclimatic controls on the δD and δ18O of precipitation during the Holocene in the Indian and East Asian monsoonal regions. Earth-Science Reviews, 159: 292–305. doi: 10.1016/J.EARSCIREV.2016.06.007
    Reimer P J, Austin W E N, Bard E, et al. 2020. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon, 62(4): 725–757. doi: 10.1017/RDC.2020.41
    Revel M, Ducassou E, Grousset F E, et al. 2010. 100, 000 Years of African monsoon variability recorded in sediments of the Nile margin. Quaternary Science Reviews, 29(11–12): 1342–1362,
    Shen Ji, Wu Xudong, Zhang Zhaohui, et al. 2013. Ti content in Huguangyan maar lake sediment as a proxy for monsoon-induced vegetation density in the Holocene. Geophysical Research Letters, 40(21): 5757–5763. doi: 10.1002/GRL.50740
    Verschuren D. 1999. Sedimentation controls on the preservation and time resolution of climate-proxy records from shallow fluctuating lakes. Quaternary Science Reviews, 18(6): 821–837. doi: 10.1016/S0277-3791(98)00065-1
    Wan Shiming, Toucanne S, Clift P D, et al. 2015. Human impact overwhelms long-term climate control of weathering and erosion in southwest China. Geology, 43(5): 439–442. doi: 10.1130/G36570.1
    Wang Wenjie. 2007. Study on the Coastal Geomorphological Sedimentation of the South China Sea (in Chinese). Guangzhou: Guangdong Economy Publishing House, 344
    Wang Yongjin, Cheng Hai, Edwards R L, et al. 2001. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294(5550): 2345–2348. doi: 10.1126/SCIENCE.1064618
    Wang Xisheng, Chu Guoqiang, Sheng Mei, et al. 2016. Millennial-scale Asian summer monsoon variations in South China since the last deglaciation. Earth and Planetary Science Letters, 451: 22–30. doi: 10.1016/J.EPSL.2016.07.006
    Wang L, Sarnthein M, Erlenkeuser H, et al. 1999a. East Asian monsoon climate during the Late Pleistocene: High-resolution sediment records from the South China Sea. Marine Geology, 156(1–4): 245–284
    Wang L, Sarnthein M, Grootes P M, et al. 1999b. Millennial reoccurrence of century-scale abrupt events of East Asian monsoon A possible heat conveyor for the global deglaciation. Paleoceanography, 14(6): 725–731. doi: 10.1029/1999PA900028
    Wang Bin, Xiang Baoqiang, Lee J Y. 2013. Subtropical High predictability establishes a promising way for monsoon and tropical storm predictions. Proceedings of the National Academy of Sciences of the United States of America, 110(8): 2718–2722. doi: 10.1073/PNAS.1214626110
    Wei Gangjian, Li Xianhua, Liu Ying, et al. 2006. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea. Paleoceanography, 21(4): PA4214. doi: 10.1029/2006PA001300
    Wei Gangjian, Liu Ying, Li Xianhua, et al. 2004. Major and trace element variations of the sediments at ODP Site 1144, South China Sea, during the last 230 ka and their paleoclimate implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 212(3–4): 331–342,
    White A F, Blum A E. 1995. Effects of climate on chemical_ weathering in watersheds. Geochimica et Cosmochimica Acta, 59(9): 1729–1747. doi: 10.1016/0016-7037(95)00078-E
    Wu Xudong, Zhang Zhaohui, Xu Xiaomei, et al. 2012. Asian summer monsoonal variations during the Holocene revealed by Huguangyan Maar lake sediment record. Palaeogeography, Palaeoclimatology, Palaeoecology, 323–325: 13–21,
    Xu Dong, Chu Fengyou, Li Jiabiao, et al. 2014. Transport and deposition of sediment on the shelf off western Guangdong to northeastern Hainan. Journal of Jilin University: Earth Science Edition (in Chinese), 44(3): 905–917. doi: 10.13278/j.cnki.jjuese.201403115
    Xu Hai, Goldsmith Y, Lan Jianghu, et al. 2020. Juxtaposition of western Pacific subtropical high on Asian summer monsoon shapes subtropical East Asian precipitation. Geophysical Research Letters, 47(3): e2019GL084705. doi: 10.1029/2019GL084705
    Yancheva G, Nowaczyk N R, Mingram J, et al. 2007. Influence of the intertropical convergence zone on the East Asian monsoon. Nature, 445(7123): 74–77. doi: 10.1038/NATURE05431
    Yang Song, Min Wen, Higgins R W. 2008. Subseasonal features of the Asian summer monsoon in the NCEP climate forecast system. Acta Oceanologica Sinica, 27(3): 88–103
    Yu Shaohua, Chen Fang, Jing Xia, et al. 2021. Increasing terrigenous pollen input in the late Holocene: Indications of intensive human activity and accelerated delta plain progradation. Marine Geology, 439: 106547. doi: 10.1016/J.MARGEO.2021.106547
    Zaarur S, Stein M, Adam O, et al. 2018. Late Quaternary climate in southern China deduced from Sr–Nd isotopes of Huguangyan Maar sediments. Earth and Planetary Science Letters, 496: 10–19. doi: 10.1016/J.EPSL.2018.05.025
    Zhang Jiawu, Chen Fahu, Holmes J A, et al. 2011. Holocene monsoon climate documented by oxygen and carbon isotopes from lake sediments and peat bogs in China: a review and synthesis. Quaternary Science Reviews, 30(15–16): 1973–1987,
    Zhang Enlou, Zhao Cheng, Xue Bin, et al. 2017. Millennial-scale hydroclimate variations in southwest China linked to tropical Indian Ocean since the Last Glacial Maximum. Geology, 45(5): 435–438. doi: 10.1130/G38309.1
    Zhao Yan, Yu Zicheng, Chen Fahu, et al. 2009. Vegetation response to Holocene climate change in monsoon-influenced region of China. Earth-Science Reviews, 97(1–4): 242–256,
    Zhao Ping, Zhou Xiuji. 2006. Decadal variability of rainfall persistence time and rainbelt shift over eastern China in recent 40 years. Journal of Applied Meteorological Science (in Chinese), 17(5): 548–556
    Zhong Lifeng, Li Gang, Yan Wen, et al. 2017a. Using zircon U–Pb ages to constrain the provenance and transport of heavy minerals within the northwestern shelf of the South China Sea. Journal of Asian Earth Sciences, 134: 176–190. doi: 10.1016/j.jseaes.2016.11.019
    Zhong Wei, Tang Xiaowen, Shang Shengtan, et al. 2021. Magnetic properties of the surface sediments from the Huguangyan Maar Lake in tropical Southern China and the sediment source identification. Near Surface Geophysics, 19(6): 661–676. doi: 10.1002/NSG.12175
    Zhong Wei, Wei Zhiqiang, Chen Yu, et al. 2017b. A 15.4-ka paleoclimate record inferred from δ13C and δ15N of organic matter in sediments from the sub-alpine Daping Swamp, western Nanling Mountains, South China. Journal of Paleolimnology, 57(2): 127–139. doi: 10.1007/S10933-016-9935-X
    Zhong Wei, Xue Jibin, Zheng Yanming, et al. 2010. Climatic changes since the last deglaciation inferred from a lacustrine sedimentary sequence in the eastern Nanling Mountains, South China. Journal of Quaternary Science, 25(6): 975–984. doi: 10.1002/JQS.1384
    Zhou Houyun, Guan Huazheng, Chi Baoquan. 2007. Record of winter monsoon strength. Nature, 450(7168): E10–E11. doi: 10.1038/NATURE06408
    Zhou Xin, Sun Liguang, Zhan Tao, et al. 2016. Time-transgressive onset of the Holocene optimum in the East Asian monsoon region. Earth and Planetary Science Letters, 456: 39–46. doi: 10.1016/J.EPSL.2016.09.052
    Zhou Tianjun, Yu Rucong, Zhang Jie, et al. 2009. Why the western pacific subtropical high has extended westward since the late 1970s. Journal of Climate, 22(8): 2199–2215. doi: 10.1175/2008JCLI2527.1
    Zhou Xin, Zhan Tao, Tu Luyao, et al. 2022. Monthly insolation linked to the time-transgressive nature of the Holocene East Asian monsoon precipitation maximum. Geology, 50(3): 331–335. doi: 10.1130/G49550.1
    Zhu Zongmin, Feinberg J M, Xie Shucheng, et al. 2017. Holocene ENSO-related cyclic storms recorded by magnetic minerals in speleothems of central China. Proceedings of the National Academy of Sciences of the United States of America, 114(5): 852–857. doi: 10.1073/PNAS.1610930114
    Zong Yongqiang. 2004. Mid-Holocene sea-level highstand along the Southeast coast of China. Quaternary International, 117(1): 55–67. doi: 10.1016/S1040-6182(03)00116-2
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  116
  • HTML全文浏览量:  49
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-03
  • 录用日期:  2022-10-28
  • 网络出版日期:  2023-09-01
  • 刊出日期:  2023-09-01

目录

    /

    返回文章
    返回