Record of hydrothermal activity in the Yuhuang hydrothermal field and its implications for the Southwest Indian Ridge: evidence from sulfide chronology
-
Abstract: The Yuhuang hydrothermal field (YHF) is located between the Indomed and Gallieni fracture zones near the top of the off-axis slope on the south rift wall of Segment 29 on the ultraslow Southwest Indian Ridge (SWIR). Previous studies have shown that sulfides in the YHF formed during different mineralization episodes and the YHF has the greatest potential for the formation of large-scale seafloor massive sulfide deposits. However, the sulfide chronology and hydrothermal activity of the YHF remain poorly constrained. In this study, mineralogical analyses and 230Th/U dating were performed. Hydrothermal activity may start about (35.9±2.3) kyrs from the southwest part of the YHF and may cease about 708±81 years ago from the northeast part of the YHF. The 74 nonzero chronological data from hydrothermal sulfide samples provide the first quantitative characterization of the spatial and temporal history along the SWIR. Hydrothermal activity in the SWIR has been relatively active over the past 20 kyrs. In contrast, between 40 kyrs and 100 kyrs, hydrothermal activity was relatively infrequently and short in duration. The maximum activity occurred at 15–11 kyrs, 9–7 kyrs, 6–0.2 kyrs. There was a slight positive correlation between the maximal age and estimated surface area or estimated tonnage. The minimum mass accumulation rate of YHF is about 278 t/a, which is higher than most HFs related to ultramafic systems. The ultraslow spreading SWIR have the greatest potential to form large-scale SMS deposits. The results of this study provide new insights into the metallogenic mechanism of hydrothermal sulfides along ultraslow-spreading ridges.
-
Figure 1. Geological setting and topography of the study area. a. Geotectonic setting and topography of the Southwest Indian Ridge (SWIR) (modified from Yang et al., 2023). b. Shipboard bathymetric map of Yuhuang on the SWIR. c. The sampling stations in this study, all the others sampling stations can be seen in Yu et al., 2021. The red star in a represents the study area while the black dots represent the hydrothermal fields which have mentioned in this paper. White dotted lines in b and red dotted lines in c represent the non-transform discontinuity (NTD) and inferred faults, respectively.
Figure 2. Photographs of sulfides from the Yuhuang hydrothermal field (Modified from Liao et al., 2018). a–d represents sample 21-TVG22-3, 34-TVG22-1, 34-TVG22-2 and 34-TVG23-4 respectively. Mineral abbreviations: Py, pyrite; Ccp, chalcopyrite; Mas, marcasite; Sph, sphalerite; Si, amorphous silica.
Figure 3. Represent photomicrographs of sulfides from the Yuhuang HF. a. Sphalerite coexisting with chalcopyrite and replacing pyrrhotite (21VII-TVG22-3). b. Typical varieties of pyrite: predominant fine-grained pyrite (Py1), coarse-grained pyrite (Py2), and colloform pyrite (Py3) (34-TVG22-1). c. Colloform structure of pyrite and marcasite (34-TVG22-1). d. Pyrite replaced by chalcopyrite, and bornite replaced by chalcopyrite (34-TVG22-1). e. Sphalerite shows two generations (Sph1 and Sph2) that replaced by chalcopyrite, bornite replaced by chalcopyrite (34-TVG22-2). f. Chalcopyrite replaced by sphalerite, chalcopyrite has a bornite solid solution and growth edge (34-TVG22-2). g. Pyrite in the amorphous silica vein replaced by sphalerite (34-TVG23-4). h. Banded sphalerite (34-TVG23-4). i. Sphalerite replaced by pyrite (34-TVG23-4).
Figure 6. Age distribution of hydrothermal sulfide samples from the SWIR. Data base: Longqi (Liang et al., 2018); Duanqiao (Yang et al., 2017); Mt. Jourdanne (Münch et al., 2001).
Figure 8. Relationship between age and estimated surface areas (a) and estimated resources (b). The red, black, blue and green symbols represent the hydrothermal fields of ultraslow, slow, intermediate and fast spreading ridges respectively. Filled symbols and empty symbols represent the basalts-hosted and ultramafic-hosted hydrothermal fields respectively. Abbreviations and data base: YH-Yuhuang (Yu et al., 2021 and this study), DQ-Duanqiao(Yang et al., 2017, 2023), TZ-Tianzuo (Chen et al., 2018), MT-Mt. Jourdanne (Münch et al., 2001), KA-Kairei (Hannington et al., 2011; Wang et al., 2012), ME-Meso (Lalou et al., 1998; Hannington et al., 2011), SE-Semyenov, KR-Krasnow, ZV-Zenith-Victoria, IR- Irinovskoye, PE-Peterburgskoe, PDF-Puy des Folles, L-1-Logatchev-1, L-2-Logatchev-2, RA-Rainbow, A-1-Ashadze-1, A-2-Ashadze-2, SN-Snakepit, IR-Irinovskoye, PO-Pobeda (Hannington et al., 2011; Lalou et al., 1993, 1996; Cherkashov et al., 2010, 2017; Kuznetsov et al., 2011, 2015; Musatov and Cherkashov, 2020), T-A-TAG Active mound (Hannington et al.,1998; Lalou et al., 1995), T-S-TAG eSMS mounds(Murton et al., 2019; You and Bickle, 1998), LS-Lucky Stirke (Sánchez-Mora et al., 2022), MEF-Main Endeavour Field (Jamieson et al., 2013, 2014), HR-High rise(Hannington et al., 2011; Jamieson et al., 2013), MO-Mothra(Hannington et al., 2011; Jamieson et al., 2013), 12°50′ (Lalou et al., 1985; Hannington et al., 2011). If the data is a range, take the maximal estimated surface areas or the maximal estimated resource in this figure.
Table 1. U and Th and 230Th ages for sulfide samples from Yuhuang hydrothermal field
Sample Longitude Latitude Depth/ 238U/ 232Th/ 230Th / 232Th δ234U* 230Th / 238U 230Th Age/a 230Th Age/a δ234UInitial** 230Th Age/
(a BP)***Number (°E) (°S) m ppb ppt (atomic x10-6) (measured) (activity) (uncorrected) (corrected) (corrected) (corrected) NES 21VII-TVG22-1 49.265 37.939 1443 39847 ±130 276 ±10 198929.6 ±6940.0 145 ±2.1 0.0836 ±0.0004 8253 ±42 8253 ±42 148 ±2 8233 ±42 21VII-TVG22-2 49.265 37.939 1443 1126.5 ±1.5 787 ±16 1846.4 ±39.9 135.9 ±2.4 0.0782 ±0.0005 7767 ±56 7749 ±58 139 ±2 7729 ±58 21VII-TVG22-3 49.265 37.939 1443 139.6 ±0.2 565 ±12 386.5 ±16.4 133.3 ±5.1 0.0949 ±0.0035 9523 ±367 9419 ±374 137 ±5 9399 ±374 21VII-TVG22-3-1 49.265 37.939 1443 124 ±0.2 1244 ±27 50.3 ±9.4 141.5 ±5.2 0.0306 ±0.0057 2959 ±560 2703 ±587 143 ±5 2682 ±587 21VII-TVG22-3-2 49.265 37.939 1443 791.4 ±1.4 1451 ±30 73 ±7.1 146.1 ±3.3 0.0081 ±0.0008 775 ±74 729 ±81 146 ±3 708 ±81 21VII-TVG22-3-3 49.265 37.939 1443 70.1 ±0.1 2161 ±44 19 ±4.5 138.1 ±8.6 0.0355 ±0.0084 3452 ±828 2662 ±994 139 ±9 2641 ±994 21VII-TVG22-3-4 49.265 37.939 1443 35.1 ±0.0 391 ±9 48.7 ±13.3 148.8 ±7.2 0.0328 ±0.0089 3161 ±872 2879 ±893 150 ±7 2858 ±893 34II-TVG23-4-1 49.265 37.937 1557 1419 ±2.3 2178 ±45 991.8 ±20.8 138.3 ±2.1 0.0923 ±0.0005 9208 ±52 9169 ±59 142 ±2 9148 ±59 34II-TVG23-4-2 49.265 37.937 1557 1107 ±1.3 1325 ±28 1046.3 ±23.0 141.3 ±1.7 0.0759 ±0.0005 7499 ±55 7469 ±59 144 ±2 7448 ±59 SWS 34II-TVG22-1-3 49.258 37.942 1499 1823.9 ±3.0 2723 ±55 1285.5 ±26.2 150.5 ±2.4 0.1164 ±0.0004 11606 ±53 11569 ±59 156 ±2 11549 ±59 34II-TVG22-1-12 49.258 37.942 1499 3116.3 ±5.2 2081 ±43 3692.4 ±77.4 136 ±2.8 0.1496 ±0.0007 15353 ±85 15336 ±86 142 ±3 15316 ±86 34II-TVG22-2-1 49.258 37.942 1499 88.5 ±0.2 464 ±11 609.6 ±26.6 132.1 ±12.2 0.194 ±0.0072 20418 ±864 20284 ±868 140 ±13 20264 ±868 34II-TVG22-2-2 49.258 37.942 1499 153.1 ±0.2 1066 ±23 580.3 ±22.6 135.2 ±8.6 0.245 ±0.0079 26380 ±983 26203 ±989 146 ±9 26183 ±989 34II-TVG22-2-4 49.258 37.942 1499 37 ±0.1 419 ±10 453.6 ±24.5 94 ±24.4 0.311 ±0.0151 36292 ±2312 35994 ±2312 104 ±27 35974 ±2312 34II-TVG22-2-5 49.258 37.942 1499 42.6 ±0.2 447 ±12 405.4 ±34.5 126.7 ±34.5 0.2582 ±0.0209 28241 ±2787 27972 ±2783 137 ±37 27952 ±2783 34II-TVG22-2-6 49.258 37.942 1499 97.7 ±0.1 240 ±5 866.9 ±27.0 148.7 ±5.1 0.1292 ±0.0028 12974 ±305 12912 ±308 154 ±5 12892 ±308 Tianzuo HF 20-S25-TVG21 63.533 27.85 3630 2745 ±4 7445 ±149 2670.2 ±53.7 109.9 ±1.6 0.4392 ±0.0009 54404 ±177 54334 ±177 128 ±2 54314 ±177 GBW04412 – – – 10278 ±14 5821 ±117 31226.7 ±631.2 852.4 ±2.2 1.0726 ±0.0021 87046 ±294 87038 ±294 1090 ±3 87017 ±294 *δ234U = ([234U/238U]activity– 1)×1000. ** δ234Uinitial was calculated based on 230Th age (T), i.e., δ234Uinitial = δ234Umeasured×eλ234×T.
Corrected 230Th ages assume the initial 230Th/232Th atomic ratio of 4.4 ±2.2 ×10-6.
Those are the values for a material at secular equilibrium, with the bulk earth 232Th/238U value of 3.8. The errors are arbitrarily assumed to be 50%.
***B.P. stands for “Before Present” where the “Present” is defined as the year 2000 A.D. Sample 20-S25-TVG21 from Tianzuo HF here is for later comparison and discussion. -
Bach W, Banerjee N R, Dick H J B, et al. 2002. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10-16°E. Geochemistry, Geophysics, Geosystems, 3(7): 1–14, Baker E T, German C R. 2004. On the global distribution of hydrothermal vent fields. In: German C R, Lin J, Parson L M, eds. Mid-Ocean Ridges: Hydrothermal Interactions Between the Lithosphere and Oceans. Washington: AGU, 245–266 Cannat M, Rommevaux-Jestin C, Sauter D, et al. 1999. Formation of the axial relief at the very slow spreading Southwest Indian Ridge (49° to 69°E). Journal of Geophysical Research:Solid Earth, 104(B10): 22825–22843. doi: 10.1029/1999jb900195 Cao Hong, Sun Zhilei, Jiang Zike, et al. 2021. Source origin and ore-controlling factors of hydrothermal sulfides from the Tianzuo hydrothermal field, Southwest Indian Ridge. Ore Geology Reviews, 134: 104168. doi: 10.1016/j.oregeorev.2021.104168 Chen Jie, Tao Chunhui, Liang Jin, et al. 2018. Newly discovered hydrothermal fields along the ultraslow-spreading Southwest Indian Ridge around 63°E. Acta Oceanologica Sinica, 37(11): 61–67. doi: 10.1007/s13131-018-1333-y Chen J H, Wasserburg G J, von Damm K L, et al. 1986. The U–Th–Pb systematics in hot springs on the East Pacific Rise at 21°N and Guaymas Basin. Geochimica et Cosmochimica Acta, 50(11): 2467–2479. doi: 10.1016/0016-7037(86)90030-x Cheng Hai, Edwards R L, Shen Chuanchou, et al. 2013. Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 371–372: 82–91, Cherkashov G, Kuznetsov V, Kuksa K, et al. 2017. Sulfide geochronology along the Northern Equatorial Mid-Atlantic Ridge. Ore Geology Reviews, 87: 147–154. doi: 10.1016/j.oregeorev.2016.10.015 Cherkashov G, Poroshina I, Stepanova T, et al. 2010. Seafloor massive sulfides from the northern equatorial mid-Atlantic Ridge: new discoveries and perspectives. Marine Georesources & Geotechnology, 28(3): 222–239. doi: 10.1080/1064119X.2010.483308 Dezileau L, Bareille G, Reyss J L, et al. 2000. Evidence for strong sediment redistribution by bottom currents along the southeast Indian ridge. Deep-Sea Research Part I, 47(10): 1899–1936. doi: 10.1016/S0967-0637(00)00008-X Dick H J B, Lin Jian, Schouten H. 2003. An ultraslow-spreading class of ocean ridge. Nature, 426(6965): 405–412. doi: 10.1038/nature02128 Ding Teng, Tao Chunhui, Dias Á A, et al. 2021. Sulfur isotopic compositions of sulfides along the southwest Indian ridge: implications for mineralization in ultramafic rocks. Mineralium Deposita, 56(6): 991–1006. doi: 10.1007/s00126-020-01025-0 Edwards R L, Chen J H, Ku T L, et al. 1987. Precise timing of the last interglacial period from mass spectrometric determination of thorium-230 in corals. Science, 236(4808): 1547–1553. doi: 10.1126/science.236.4808.1547 Fouquet Y. 1997. Where are the large hydrothermal sulphide deposits in the oceans?. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 355(1723): 427–441 Fouquet Y, Cambon P, Etoubleau J, et al. 2010. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. American Geophysical Union (AGU). 321–366, German C R, Petersen S, Hannington M D. 2016. Hydrothermal exploration of mid-ocean ridges: where might the largest sulfide deposits be forming? Chemical Geology, 420: 114–126, Graber S, Petersen S, Yeo I, et al. 2020. Structural control, evolution, and accumulation rates of massive sulfides in the TAG hydrothermal field. Geochemistry, Geophysics, Geosystems, 21(9): e2020GC009185, Han Xiqiu, Wu Guanghai, Cui Ruyong, et al. 2010. Discovery of a hydrothermal sulfide deposit on the southwest Indian ridge at 49.2°E. In: Proceedings of the American Geophysical Union, Fall Meeting 2010. AGU Han Xiqiu, Wu Guanghai, Cui Ruyong, et al. 2010. Discovery of a hydrothermal sulfide deposit on the southwest Indian ridge at 49.2°E. In: Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 13–17 December 2010; American Geophysical Union: Washington, DC, USA, p. OS21C–1531 Hannington M D, De Ronde C E J, Petersen S. 2005. Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist J W, Thompson J F H, Goldfarb R J, et al. , eds. One Hundredth Anniversary Volume. Society of Economic Geologists, 111–141, Hannington M D, De Ronde C E J, Petersen S. 2005. Sea-floor tectonics and submarine hydrothermal systems. In: Hedenquist J W, Thompson J F H, Goldfarb R J, et al. , eds. One Hundredth Anniversary Volume. Society of Economic Geologists, Littelton, Colorado, USA. 111–141, Hannington M D, Galley A G, Herzig P M, et al. 1998. Comparison of the TAG mound and stockwork complex with Cyprus-type massive sulfide deposits. In: Herzig P M, Humphris S E, Miller D J, et al. , eds. Proceedings of the Ocean Drilling Program, Scientific Results, 158: 389–415, Hannington M D, Galley A G, Herzig P M, et al. 1998. Comparison of the TAG mound and stockwork complex with Cyprus-type massive sulfide deposits. In: Herzig P M, Humphris S E, Miller D J, et al. , eds. Proceedings of the Ocean Drilling Program, Scientific Results, Texas A & M University, San Antonio, Texas. 158: 389–415, Hannington M, Jamieson J, Monecke T, et al. 2011. The abundance of seafloor massive sulfide deposits. Geology, 39(12): 1155–1158. doi: 10.1130/G32468.1 Huang Yongjin. 2021. Study on hydrothermal sedimentary records near the hydrothermal field of mafic and ultramafic rocks: a case study from Longqi and Tianzuo fields in the Southwest Indian Ridge (in Chinese)[dissertation]. Hangzhou: Second Institute of Oceanography, Ministry of Natural Resources Jamieson J W, Clague D A, Hannington M D, 2014. Hydrothermal sulfide accumulation along the Endeavour Segment, Juan de Fuca Ridge. Earth and Planetary Science Letters, 395: 136–148, Jamieson J W, Hannington M D, Clague D A, et al. 2013. Sulfide geochronology along the Endeavour Segment of the Juan de Fuca Ridge. Geochemistry, Geophysics, Geosystems, 14(7): 2084–2099, Kuznetsov V, Maksimov F, Zheleznov A, et al. 2011. 230Th/U chronology of ore formation within the semyenov hydrothermal district (13°31′N) at the Mid-Atlantic ridge. Geochronometria, 38(1): 72–76. doi: 10.2478/s13386-011-0001-1 Kuznetsov V, Tabuns E, Kuksa K, et al. 2015. The oldest seafloor massive sulfide deposits at the Mid-Atlantic ridge: 230Th/U chronology and composition. Geochronometria, 42(1): 100–106. doi: 10.1515/geochr-2015-0009 Lalou C, Brichet E. 1982. Ages and implications of East Pacific Rise sulphide deposits 21˚N. Nature, 300(5888): 169–171. doi: 10.1038/300169a0 Lalou C, Brichet E. 1987. On the isotopic chronology of submarine hydrothermal deposits. Chemical Geology: Isotope Geoscience Section, 65(3–4): 197–207, Lalou C, Brichet E, Hekinian R. 1985. Age dating of sulfide deposits from axial and off-axial structures on the East Pacific Rise near 12°50′N. Earth and Planetary Science Letters, 75(1): 59–71. doi: 10.1016/0012-821X(85)90050-0 Lalou C, Münch U, Halbach P, et al. 1998. Radiochronological investigation of hydrothermal deposits from the MESO zone, Central Indian Ridge. Marine Geology, 149(1–4): 243–254, Lalou C, Reyss J L, Brichet E, et al. 1993. New age data for Mid-Atlantic Ridge hydrothermal sites: TAG and Snakepit chronology revisited. Journal of Geophysical Research:Solid Earth, 98(B6): 9705–9713. doi: 10.1029/92jb01898 Lalou C, Reyss J L, Brichet E, et al. 1995. Hydrothermal activity on a 105-year scale at a slow-spreading ridge, TAG hydrothermal field, Mid-Atlantic Ridge 26°N. Journal of Geophysical Research Atmospheres, 100. Lalou C, Reyss J L, Brichet E, et al. 1996. Initial chronology of a recently discovered hydrothermal field at 14°45′N, Mid-Atlantic Ridge. Earth and Planetary Science Letters, 144(3–4): 483–490, Lalou C, Thompson G, Arnold M, et al. 1990. Geochronology of TAG and Snakepit hydrothermal fields, Mid-Atlantic Ridge: witness to a long and complex hydrothermal history. Earth and Planetary Science Letters, 97(1–2): 113–128, Liang Jin, Tao Chunhui, Yang Weifang, et al. 2018. 230Th/238U dating of sulfide chimneys in the longqi-1 hydrothermal field, southwest Indian Ridge. Acta Geologica Sinica (English Edition), 92(S2): 77–78. doi: 10.1111/1755-6724.14202 Liao Shili, Tao Chunhui, Jamieson J W, et al. 2022. Oxidizing fluids associated with detachment hosted hydrothermal systems: example from the Suye hydrothermal field on the ultraslow-spreading Southwest Indian Ridge. Geochimica et Cosmochimica Acta, 328: 19–36. doi: 10.1016/j.gca.2022.04.025 Liao Shili, Tao Chunhui, Li Huaiming, et al. 2018. Bulk geochemistry, sulfur isotope characteristics of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge. Ore Geology Review, 96: 13–27. doi: 10.1016/j.oregeorev.2018.04.007 Liao Shili, Tao Chunhui, Zhu Chuanwei, et al. 2019. Two episodes of sulfide mineralization at the Yuhuang-1 hydrothermal field on the Southwest Indian Ridge: Insight from Zn isotopes. Chemical Geology, 507: 54–63. doi: 10.1016/j.chemgeo.2018.12.037 Liu Zhonglan, Buck W R. 2018. Magmatic controls on axial relief and faulting at mid-ocean ridges. Earth and Planetary Science Letters, 491: 226–237. doi: 10.1016/j.jpgl.2018.03.045 Ludwig K A, Shen Chuanzhou, Kelley D S, et al. 2011. U–Th systematics and 230Th ages of carbonate chimneys at the Lost City Hydrothermal Field. Geochimica et Cosmochimica Acta, 75(7): 1869–1888. doi: 10.1016/j.gca.2011.01.008 Meyzen C M, Toplis M J, Humler E, et al. 2003. A discontinuity in mantle composition beneath the southwest Indian ridge. Nature, 421(6924): 731–733. doi: 10.1038/nature01424 Münch U, Lalou C, Halbach P, et al. 2001. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56′E-mineralogy, chemistry and chronology of sulfide samples. Chemical Geology, 177(3–4): 341–349, Murton B J, Lehrmann B, Dutrieux A M, et al. 2019. Geological fate of seafloor massive sulphides at the TAG hydrothermal field (Mid-Atlantic Ridge). Ore Geology Review, 107: 903–925. doi: 10.1016/j.oregeorev.2019.03.005 Musatov A E, Cherkashov G A. 2020. Influence of global glaciation on the origin of hydrothermal activity within the Mid-Atlantic Ridge. Oceanology, 60(3): 405–411. doi: 10.1134/S0001437020030066 Nayak B, Halbach P, Pracejus B, et al. 2014. Massive sulfides of Mount Jourdanne along the super-slow spreading Southwest Indian Ridge and their genesis. Ore Geology Reviews, 63: 115–128. doi: 10.1016/j.oregeorev.2014.05.004 Pedersen R B, Rapp H T, Thorseth I H, et al. 2010. Discovery of a black smoker vent field and vent fauna at the Arctic Mid-Ocean Ridge. Nature Communications, 1(1): 126. doi: 10.1038/NCOMMS1124 Petersen S, Hein J R. 2013. The Geology of Sea-Floor Massive Sulphides[M]// Deep Sea Minerals: Sea-Floor Massive Sulphides; A physical, biological, environmental, and technical review. Baker E, and Beaudoin Y. (Eds. ) Vol. 1A, Secretariat of the Pacific Community, GRID-Arendal, 7–18 Sánchez-Mora D, Jamieson J, Cannat M, et al. 2022. Age and rate of accumulation of metal-rich hydrothermal deposits on the seafloor: the lucky strike vent field, mid-Atlantic ridge. Journal of Geophysical Research:Solid Earth, 127(6): e2022JB024031. doi: 10.1029/2022JB024031 Sauter D, Cannat M. 2010. The ultraslow spreading southwest Indian ridge. In: Rona P A, Devey C W, Dyment J, et al. , eds. Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges. Washington: AGU, 153–173, Sauter D, Patriat P, Rommevaux-Jestin C, et al. 2001. The Southwest Indian Ridge between 49°15′ E and 57°E: focused accretion and magma redistribution. Earth and Planetary Science Letters, 192(3): 303–317. doi: 10.1016/s0012-821x(01)00455-1 Tao Chunhui, Lin Jian, Guo Shiqin, et al. 2012. First active hydrothermal vents on an ultraslow-spreading center: southwest Indian Ridge. Geology, 40(1): 47–50. doi: 10.1130/G32389.1 Tao Chunhui, Seyfried W E Jr, Lowell R P, et al. 2020. Deep high-temperature hydrothermal circulation in a detachment faulting system on the ultra-slow spreading ridge. Nature Communication, 11(1): 1300. doi: 10.1038/s41467-020-15062-w Wang Yejian, Han Xiqiu, Jin Xionglong, et al. 2012. Hydrothermal activity events at Kairei field, Central Indian Ridge 25°S. Resource Geology, 62(2): 208–214. doi: 10.1111/j.1751-3928.2012.00189.x Wang Lisheng, Sun Zhilei, Cao Hong, et al. 2021. A new method for the U–Th dating of a carbonate chimney deposited during the last glaciation in the northern Okinawa Trough, east China sea. Quaternary Geochronology, 66: 101199. doi: 10.1016/j.quageo.2021.101199 Yang Weifang, Liao Shili, Dias Á A, et al. 2023. Geochemistry, sulfur and lead isotopic composition of hydrothermal sulfide from the Duanqiao hydrothermal field on the Southwest Indian Ridge: implications for ore genesis. International Geology Review, 65(6): 883–899. doi: 10.1080/00206814.2022.2081937 Yang Weifang, Tao Chunhui, Li Huaiming, et al. 2017. 230Th/238U dating of hydrothermal sulfides from Duanqiao hydrothermal field, Southwest Indian Ridge. Marine Geophysical Research, 38(1–2): 71–83 You C F, Bickle M J. 1998. Evolution of an active sea-floor massive sulphide deposit. Nature, 394(6694): 668–671. doi: 10.1038/29279 Yu Junyu. 2022. Enrichment and migration of ore-forming elements in yuhuang-1 hydrothermal field at ultraslow-spreading southwest Indian Ridge (in Chinese)[dissertation]. Hangzhou: Zhejiang University Yu Junyu, Tao Chunhui, Liao Shili, et al. 2021. Resource estimation of the sulfide-rich deposits of the Yuhuang-1 hydrothermal field on the ultraslow-spreading Southwest Indian Ridge. Ore Geology Reviews, 134: 104169. doi: 10.1016/j.oregeorev.2021.104169 Zhu Zhongmin, Tao Chunhui, Shen Jinsong, et al. 2020a. Self-potential tomography of a deep-sea polymetallic sulfide deposit on Southwest Indian Ridge. Journal of Geophysical Research:Solid Earth, 125(11): e2020JB019738. doi: 10.1029/2020JB019738 Zhu Chuanwei, Tao Chunhui, Yin Runsheng, et al. 2020b. Seawater versus mantle sources of mercury in sulfide-rich seafloor hydrothermal systems, Southwest Indian Ridge. Geochimica et Cosmochimica Acta, 281: 91–101. doi: 10.1016/j.gca.2020.05.008 -

计量
- 文章访问数: 110
- HTML全文浏览量: 46
- 被引次数: 0