A VGGNet-based correction for satellite altimetry-derived gravity anomalies to improve the accuracy of bathymetry to depths of 6 500 m

Xiaolun Chen Xiaowen Luo Ziyin Wu Xiaoming Qin Jihong Shang Huajun Xu Bin Li Mingwei Wang Hongyang Wan

Xiaolun Chen, Xiaowen Luo, Ziyin Wu, Xiaoming Qin, Jihong Shang, Huajun Xu, Bin Li, Mingwei Wang, Hongyang Wan. A VGGNet-based correction for satellite altimetry-derived gravity anomalies to improve the accuracy of bathymetry to depths of 6 500 m[J]. Acta Oceanologica Sinica, 2024, 43(1): 112-122. doi: 10.1007/s13131-023-2203-9
Citation: Xiaolun Chen, Xiaowen Luo, Ziyin Wu, Xiaoming Qin, Jihong Shang, Huajun Xu, Bin Li, Mingwei Wang, Hongyang Wan. A VGGNet-based correction for satellite altimetry-derived gravity anomalies to improve the accuracy of bathymetry to depths of 6 500 m[J]. Acta Oceanologica Sinica, 2024, 43(1): 112-122. doi: 10.1007/s13131-023-2203-9

doi: 10.1007/s13131-023-2203-9

A VGGNet-based correction for satellite altimetry-derived gravity anomalies to improve the accuracy of bathymetry to depths of 6 500 m

Funds: The National Key R&D Program of China under contract Nos 2022YFC3003800, 2020YFC1521700 and 2020YFC1521705; the National Natural Science Foundation of China under contract No. 41830540; the Open Fund of the East China Coastal Field Scientific Observation and Research Station of the Ministry of Natural Resources under contract No. OR-SECCZ2022104; the Deep Blue Project of Shanghai Jiao Tong University under contract No. SL2020ZD204; the Special Funding Project for the Basic Scientific Research Operation Expenses of the Central Government-Level Research Institutes of Public Interest of China under contract No. SZ2102; the Zhejiang Provincial Project under contract No. 330000210130313013006.
More Information
    • 关键词:
    •  / 
    •  / 
    •  / 
    •  / 
    •  
  • Figure  1.  The research structure.

    Figure  2.  Architecture of the VGG-19 model. The boxes represent the size of each layer.

    Figure  3.  The calculation and processing flow of the filter method.

    Figure  4.  The training and validation loss from the experiments in the Southern Ocean, Pacific Ocean, Atlantic Ocean, and Caribbean Sea.

    Figure  5.  Comparison of local details of gravity anomalies before and after correction from the Southern Ocean, Pacific Ocean, Atlantic Ocean, and Caribbean Sea. Each subfigure shows three visualizations of randomly selected locations.

    Figure  6.  R2 values at different water depths compared with the bathymetry-only correction methos in the Southern Ocean (a), Pacific Ocean (b), Atlantic Ocean (c), and Caribbean Sea (d).

    Figure  7.  Percentage distributions of NRMSE performance in datasets from the Southern Ocean, Pacific Ocean, Atlantic Ocean, and Caribbean Sea.

    Table  1.   The default hyperparameters of the training model

    HyperparameterSetting
    Content layer“conv4_2”
    Style layer“conv1_1”, “conv2_1”, “conv3_1”, “conv4_1”, “conv5_1”
    Weight of loss at content layer1
    Weight of loss at style layer1, 1, 1, 1
    Weights among content, style, and total variation loss1 × 10−4, 1, 1 × 10−5
    Learning ratestarts at 10 and linear decays over 100 iterations to 1
    下载: 导出CSV

    Table  2.   The parameters of the datasets

    LocationCenter point coordinateSpatial resolution/mData sizeArea/km2Bathymetry/m
    Southern Ocean71°S, 173°E935 097 10443 700211−4077
    Pacific Ocean9°S, 140°W9333 048 000283 337113−4992
    Atlantic Ocean32°N, 65°W933 240 00027 77858−4920
    Caribbean Sea18°N, 82°W12310 614 363150 3101−6580
    下载: 导出CSV

    Table  3.   Overall accuracy of the gravity correction

    LocationR2SD/mGalRMSE/mGalNRMSE
    Southern Ocean0.90218.33313.6300.113
    Pacific Ocean0.95517.89210.0500.118
    Atlantic Ocean0.93019.56721.5490.114
    Caribbean Sea0.91921.05116.4850.113
    下载: 导出CSV

    Table  4.   The overall accuracy of the bathymetry correction

    LocationR2SD/mRMSE/mNRMSE
    Southern Ocean0.822104.790107.0240.027
    Pacific Ocean0.834117.630126.3660.026
    Atlantic Ocean0.833124.847136.6220.028
    Caribbean Sea0.783139.583164.4750.025
    下载: 导出CSV

    Table  5.   Proportion of corrected errors from true values within 2% and 1% of the depth range

    LocationProportion of corrected errors/%
    1% of depth2% of depth
    Southern Ocean68.0575.69
    Pacific Ocean61.5377.52
    Atlantic Ocean57.5868.69
    Caribbean Sea51.0364.58
    下载: 导出CSV
  • Airy G B. 1855. III. On the computation of the effect of the attraction of mountain-masses, as disturbing the apparent astronomical latitude of stations in geodetic surveys. Philosophical Transactions of the Royal Society of London, 145: 101–104, doi: 10.1098/rstl.1855.0003
    An Dechao, Guo Jinyun, Li Zhen, et al. 2022. Improved gravity-geologic method reliably removing the long-wavelength gravity effect of regional seafloor topography: a case of bathymetric prediction in the South China Sea. IEEE Transactions on Geoscience and Remote Sensing, 60: 4211912, doi: 10.1109/TGRS.2022.3223047
    Annan R F, Wan Xiaoyun. 2022. Recovering bathymetry of the gulf of guinea using altimetry-derived gravity field products combined via convolutional neural network. Surveys in Geophysics, 43(5): 1541–1561, doi: 10.1007/s10712-022-09720-5
    Benedetti P, Ienco D, Gaetano R, et al. 2018. M3Fusion: a deep learning architecture for multiscale multimodal multitemporal satellite data fusion. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(12): 4939–4949, doi: 10.1109/JSTARS.2018.2876357
    Bonvalot S, Balmino G, Briais A, et al. 2012. World gravity map. commission for the geological map of the world. Paris, France: BGI–CGMW-CNES-IRD
    Braitenberg C, Wienecke S, Wang Yong. 2006. Basement structures from satellite-derived gravity field: South China Sea ridge. Journal of Geophysical Research: Solid Earth, 111(B5): B05407, doi: 10.1029/2005JB003938
    Chen Xiaolun, Luo Xiaowen, Wu Ziyin, et al. 2022. A VGGNet-based method for refined bathymetry from satellite altimetry to reduce errors. Remote Sensing, 14(23): 5939, doi: 10.3390/rs14235939
    Colbo K, Ross T, Brown C, et al. 2014. A review of oceanographic applications of water column data from multibeam echosounders. Estuarine, Coastal and Shelf Science, 145: 41–56,
    Coley K. 2022. A global ocean map is not an ambition, but a necessity to support the ocean decade. Marine Technology Society Journal, 56(3): 9–12, doi: 10.4031/MTSJ.56.3.3
    Fan Diao, Li Shanshan, Li Xinxing, et al. 2021. Seafloor topography estimation from gravity anomaly and vertical gravity gradient using nonlinear iterative least square method. Remote Sensing, 13(1): 64, doi: 10.3390/rs13010064
    Fan Diao, Li Shanshan, Meng Shuyu, et al. 2020. Applying iterative method to solving high-order terms of seafloor topography. Marine Geodesy, 43(1): 63–85, doi: 10.1080/01490419.2019.1670298
    Gatys L A, Ecker A S, Bethge M. 2016. A neural algorithm of artistic style. Journal of Vision, 16(12): 326, doi: 10.1167/16.12.326
    Gatys L A, Ecker A S, Bethge M, et al. 2017. Controlling perceptual factors in neural style transfer. In: Proceedings of 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 3730–3738, doi: 10.1109/CVPR.2017.397
    Gong Zheng, Zhang Peizhen, Zheng Wenjun, et al. 2021. The effect of altimetry data in estimating the elastic thickness of the lithosphere in the western Pacific Ocean. Geodesy and Geodynamics, 12(5): 315–322, doi: 10.1016/j.geog.2021.07.001
    Hu Minzhang, Zhang Shengjun, Jin Taoyong, et al. 2020. A new generation of global bathymetry model BAT_WHU2020. Acta Geodaetica et Cartographica Sinica (in Chinese), 49(8): 939–954, doi: 10.11947/j.AGCS.2020.20190526
    Hughes Clarke J E. 2018. Multibeam echosounders. In: Micallef A, Krastel S, Savini A, eds. Submarine Geomorphology. Cham: Springer, 25–41,
    Huo Guanying, Wu Ziyin, Li Jiabiao. 2020. Underwater object classification in sidescan sonar images using deep transfer learning and semisynthetic training data. IEEE Access, 8: 47407–47418, doi: 10.1109/ACCESS.2020.2978880
    Ibrahim A, Hinze W J. 1972. Mapping buried bedrock topography with gravity. Groundwater, 10(3): 18–23, doi: 10.1111/j.1745-6584.1972.tb02921.x
    Islam M J, Xia Youya, Sattar J. 2020. Fast underwater image enhancement for improved visual perception. IEEE Robotics and Automation Letters, 5(2): 3227–3234, doi: 10.1109/LRA.2020.2974710
    Jena B, Kurian P J, Swain D, et al. 2012. Prediction of bathymetry from satellite altimeter based gravity in the Arabian Sea: mapping of two unnamed deep seamounts. International Journal of Applied Earth Observation and Geoinformation, 16: 1–4, doi: 10.1016/j.jag.2011.11.008
    Jia Yangqing, Shelhamer E, Donahue J, et al. 2014. Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM International Conference on Multimedia. Orlando, USA: Association for Computing Machinery, 675–678,
    Koh Z W, Nimmo F, Lunine J I, et al. 2022. Assessing the detectability of Europa’s seafloor topography from Europa clipper’s gravity data. The Planetary Science Journal, 3(8): 197, doi: 10.3847/PSJ/ac82aa
    Krizhevsky A, Sutskever I, Hinton G E. 2017. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6): 84–90, doi: 10.1145/3065386
    Li Jiabiao. 1999. Multibeam Survey Principles, Techniques and Methods (in Chinese). Beijing: China Ocean Press
    Moran N P. 2020. Machine learning model selection for predicting global bathymetry [dissertation]. New Orleans, USA: University of New Orleans
    NOAA National Centers for Environmental Information. 2004. Multibeam bathymetry database (MBBDB). NOAA National Centers for Environmental Information. https://www.ncei.noaa.gov/maps/bathymetry/[2022-6-14]
    NOAA National Centers for Environmental Information. 2015. Marine trackline geophysical database. NOAA National Centers for Environmental Information. https://www.ncei.noaa.gov/maps/geophysics/[2022-06-14]
    Oldenburg D W. 1974. The inversion and interpretation of gravity anomalies. Geophysics, 39(4): 526–536, doi: 10.1190/1.1440444
    Otter D W, Medina J R, Kalita J K. 2021. A survey of the usages of deep learning for natural language processing. IEEE Transactions on Neural Networks and Learning Systems, 32(2): 604–624, doi: 10.1109/TNNLS.2020.2979670
    Ouyang Mingda, Sun Zhongmiao, Zhai Zhenhe. 2014. Predicting bathymetry in South China Sea using the gravity-geologic method. Chinese Journal of Geophysics (in Chinese), 57(9): 2756–2765, doi: 10.6038/cjg20140903
    Ouyang Mingda, Sun Zhongmiao, Zhai Zhenhe, et al. 2015. Bathymetry prediction based on the admittance theory of gravity anomalies. Acta Geodaetica et Cartographica Sinica (in Chinese), 44(10): 1092–1099, doi: 10.11947/j.AGCS.2015.20140427
    Parker R L. 1973. The rapid calculation of potential anomalies. Geophysical Journal International, 31(4): 447–455, doi: 10.1111/j.1365-246X.1973.tb06513.x
    Reddi S J, Kale S, Kumar S. 2018. On the convergence of Adam and beyond. In: Proceedings of the 6th International Conference on Learning Representations. Vancouver, Canada: OpenReview. net
    Sandwell D T, Goff J A, Gevorgian J, et al. 2022. Improved bathymetric prediction using geological information: SYNBATH. Earth and Space Science, 9(2): e2021EA002069, doi: 10.1029/2021EA002069
    Scharroo R, Visser P. 1998. Precise orbit determination and gravity field improvement for the ERS satellites. Journal of Geophysical Research: Oceans, 103(C4): 8113–8127, doi: 10.1029/97JC03179
    Schulz M A, Yeo B T T, Vogelstein J T, et al. 2020. Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets. Nature Communications, 11(1): 4238, doi: 10.1038/s41467-020-18037-z
    Seoane L, Ramillien G, Beirens B, et al. 2022. Regional seafloor topography by extended Kalman filtering of marine gravity data without ship-track information. Remote Sensing, 14(1): 169, doi: 10.3390/rs14010169
    Shi Bo, Lu Xiushan, Yang Fanlin, et al. 2017. Shipborne over- and under-water integrated mobile mapping system and its seamless integration of point clouds. Marine Geodesy, 40(2/3): 104–122,
    Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image recognition. In: Proceedings of the 3rd International Conference on Learning Representations. San Diego, USA: Association for Computing Machinery
    Smith W H F, Sandwell D T. 1994. Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry. Journal of Geophysical Research: Solid Earth, 99(B11): 21803–21824, doi: 10.1029/94JB00988
    Smith W H F, Sandwell D T. 1997. Global sea floor topography from satellite altimetry and ship depth soundings. Science, 277(5334): 1956–1962, doi: 10.1126/science.277.5334.1956
    Walcott R I. 1970. Flexural rigidity, thickness, and viscosity of the lithosphere. Journal of Geophysical Research, 75(20): 3941–3954, doi: 10.1029/JB075i020p03941
    Watts A B. 1978. An analysis of isostasy in the world’s oceans 1. Hawaiian-Emperor Seamount Chain. Journal of Geophysical Research: Solid Earth, 83(B12): 5989–6004, doi: 10.1029/JB083iB12p05989
    Watts A B. 2001. Isostasy and Flexure of the Lithosphere. Cambridge, UK: Cambridge University Press
    Watts A B, Sandwell D T, Smith W H F, et al. 2006. Global gravity, bathymetry, and the distribution of submarine volcanism through space and time. Journal of Geophysical Research: Solid Earth, 111(B8): B08408, doi: 10.1029/2005JB004083
    Wei Zhijie, Guo Jinyun, Zhu Chengcheng, et al. 2021. Evaluating accuracy of HY-2A/GM-derived gravity data with the gravity-geologic method to predict bathymetry. Frontiers in Earth Science, 9: 636246, doi: 10.3389/feart.2021.636246
    Wu Meiyin, Chen Li. 2015. Image recognition based on deep learning. In: Proceedings of 2015 Chinese Automation Congress (CAC). Wuhan, China: IEEE, 542–546, doi: 10.1109/CAC.2015.7382560
    Wu Ziyin, Yang Fanlin, Tang Yong, et al. 2020. High-Resolution Seafloor Survey and Applications. Beijing: Science Press
    Yale M M, Sandwell D T, Herring A T. 1998. What are the limitations of satellite altimetry?. The Leading Edge, 17(1): 73–76, doi: 10.1190/1.1437832
    Yuan Qiangqiang, Shen Huanfeng, Li Tongwen, et al. 2020. Deep learning in environmental remote sensing: achievements and challenges. Remote Sensing of Environment, 241: 111716, doi: 10.1016/j.rse.2020.111716
    Zhao Jianhu, Ouyang Yongzhong, Wang Aixue. 2017. Status and development tendency for seafloor terrain measurement technology. Acta Geodaetica et Cartographica Sinica (in Chinese), 46(10): 1786–1794, doi: 10.11947/j.AGCS.2017.20170276
    Zhu Chengcheng, Guo Jinyun, Yuan Jiajia, et al. 2021. Refining altimeter-derived gravity anomaly model from shipborne gravity by multi-layer perceptron neural network: a case in the South China Sea. Remote Sensing, 13(4): 607, doi: 10.3390/rs13040607
    Zwally H J, Schutz B, Abdalati W, et al. 2002. ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. Journal of Geodynamics, 34(3/4): 405–445,
  • 加载中
图(7) / 表(5)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  154
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-28
  • 录用日期:  2023-04-10
  • 网络出版日期:  2023-07-11
  • 刊出日期:  2024-01-01

目录

    /

    返回文章
    返回