Spatiotemporal features and vertical structures of four types of mesoscale eddies in the Kuroshio Extension region

Bowen Sun Shuchang Xu Zhankun Wang Yujie Feng Baofu Li

Bowen Sun, Shuchang Xu, Zhankun Wang, Yujie Feng, Baofu Li. Spatiotemporal features and vertical structures of four types of mesoscale eddies in the Kuroshio Extension region[J]. Acta Oceanologica Sinica, 2024, 43(5): 30-40. doi: 10.1007/s13131-024-2323-x
Citation: Bowen Sun, Shuchang Xu, Zhankun Wang, Yujie Feng, Baofu Li. Spatiotemporal features and vertical structures of four types of mesoscale eddies in the Kuroshio Extension region[J]. Acta Oceanologica Sinica, 2024, 43(5): 30-40. doi: 10.1007/s13131-024-2323-x

doi: 10.1007/s13131-024-2323-x

Spatiotemporal features and vertical structures of four types of mesoscale eddies in the Kuroshio Extension region

Funds: The Natural Science Foundation of Shandong Province under contract No. ZR2021YQ28; the Taishan Scholars Project of Shandong Province under contract No. tsqn202306182.
More Information
  • Figure  1.  Distribution of average eddy kinetic energy (EKE, shading) and absolute dynamic topography (ADT, contours) in the Kuroshio Extension jet and its vicinity (a), correlation coefficient of mesoscale sea surface height anomaly (SSHA) and sea surface temperature anomaly (SSTA) (the dotted region means passing the significance test of 0.01) (b), climatological monthly regional-average EKE (c), and annual cycle of spatial correlation coefficient of mesoscale SSHA and SSTA (d). The shadings in c and d indicate the standard error.

    Figure  2.  Scatter plots of sea surface height (SSH) anomaly and sea surface temperature (SST) anomaly averaged inside the eddy core corresponding to CE (a) and AE (b). The color of scatter plots denotes the proportion $ {\text{γ}} $b of abnormal points within one radius from the eddy center.

    Figure  3.  The evolution process of the average T'in (blue curves) and proportion $ {\text{γ}}$b (red curves) inside the eddy core during the lifetime of a CE (a) and an AE (b). The orange shadings mark the abnormal eddy duration periods according to the definition conditions in this study.

    Figure  4.  The distribution of zonal average radius (a), amplitude (b), eddy kinetic energy (EKE, c) and EKE intensity (EI, d) for each type of eddies in 0.5°-width latitudinal bands. WCE, warm cyclonic eddy; CAE, cold anticyclonic eddy; CCE, cold cyclonic eddy; WAE, warm anticyclonic eddy.

    Figure  5.  Seasonal variation of the occurrence frequency of four types of eddies. a. Proportion of WCEs in all cyclonic eddies in each 0.5° latitudinal bands in four seasons; b. the same with a, but for CAEs in all anticyclonic eddies; c. average occurrence numbers for four types of eddies in each month; d. average proportion of abnormal eddies in all eddies in each month. WCE, warm cyclonic eddy; CAE, cold anticyclonic eddy; CCE, cold cyclonic eddy; WAE, warm anticyclonic eddy.

    Figure  6.  The proportion of abnormal eddies (a) and normal eddies (b) in total eddies with corresponding polarity. WCE, warm cyclonic eddy; CAE, cold anticyclonic eddy; CCE, cold cyclonic eddy; WAE, warm anticyclonic eddy.

    Figure  7.  Average potential temperature and salinity characteristics in study area for four seasons. The black contour lines represent potential density, the thin colored lines represent the region north of 35°N, while the thick ones represent the region south of it.

    Figure  8.  Composite sea surface temperature (SST) anomaly (color shading) and sea surface height (SSH) anomaly (contours, unit: cm) of WCEs (a), CCEs (b), CAEs (c) and WAEs (d). IAE, index of abnormal eddy.

    Figure  9.  Vertical profiles of the temperature anomaly averaged within the radius (a) and maximum Vg anomaly on each level of the composite eddy structures (b). WCE, warm cyclonic eddy; CAE, cold anticyclonic eddy; CCE, cold cyclonic eddy; WAE, warm anticyclonic eddy.

    Figure  10.  West-east sections of temperature anomaly (color shading) and geostrophic velocity anomaly (contours, unit: cm/s) across the center of composite WCEs (a), CCEs (b), CAEs (c) and WAEs (d).

  • Castellani M. 2006. Identification of eddies from sea surface temperature maps with neural networks. International Journal of Remote Sensing, 27(8): 1601–1618, doi: 10.1080/014311605004 62170
    Chaigneau A, Le Texier M, Eldin G, et al. 2011. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. Journal of Geophysical Research: Oceans, 116(C11): C11025, doi: 10.1029/2011JC007134
    D’Alimonte D. 2009. Detection of mesoscale eddy-related structures through ISO-SST patterns. IEEE Geoscience and Remote Sensing Letters, 6(2): 189–193, doi: 10.1109/LGRS.2008.2009550
    Desbiolles F, Alberti M, Hamouda M E, et al. 2021. Links between sea surface temperature structures, clouds and rainfall: study case of the Mediterranean Sea. Geophysical Research Letters, 48(10): e2020GL091839, doi: 10.1029/2020GL091839
    Dilmahamod A F, Aguiar-González B, Penven P, et al. 2018. SIDDIES corridor: A major east-west pathway of long-lived surface and subsurface eddies crossing the subtropical South Indian Ocean. Journal of Geophysical Research: Oceans, 123(8): 5406–5425, doi: 10.1029/2018JC013828
    Dong D, Brandt D, Chang P, et al. 2017. Mesoscale eddies in the northwestern Pacific Ocean: Three-dimensional eddy structures and heat/salt transports. Journal of Geophysical Research: Oceans, 122(12): 9795–9813, doi: 10.1002/2017JC013303
    Everett J D, Baird M E, Oke P R, et al. 2012. An avenue of eddies: Quantifying the biophysical properties of mesoscale eddies in the Tasman Sea. Geophysical Research Letters, 39(16): L16608, doi: 10.1029/2012GL053091
    Fernandes A, Nascimento S. 2006. Automatic water eddy detection in SST maps using random ellipse fitting and vectorial fields for image segmentation. In: Proceedings of the 9th International Conference on Discovery Science. Barcelona, Spain: Springer, 77–88, doi: 10.1007/118933318_11
    Frenger I, Münnich M, Gruber N, et al. 2015. Southern Ocean eddy phenomenology. Journal of Geophysical Research: Oceans, 120(11): 7413–7449, doi: 10.1002/2015JC011047
    Gaube P, Chelton D B, Samelson R M, et al. 2015. Satellite observations of mesoscale eddy-induced Ekman pumping. Journal of Physical Oceanography, 45(1): 104–132, doi: 10.1175/JPO-D-14-0032.1
    Itoh S, Yasuda I. 2010a. Water mass structure of warm and cold anticyclonic eddies in the western boundary region of the subarctic North Pacific. Journal of Physical Oceanography, 40(12): 2624–2642, doi: 10.1175/2010JPO4475.1
    Itoh S, Yasuda I. 2010b. Characteristics of mesoscale eddies in the Kuroshio-Oyashio Extension region detected from the distribution of the sea surface height anomaly. Journal of Physical Oceanography, 40(5): 1018–1034, doi: 10.1175/2009JPO4265.1
    Ji Jinlin, Dong Changming, Zhang Biao, et al. 2017. An oceanic eddy statistical comparison using multiple observational data in the Kuroshio Extension region. Acta Oceanologica Sinica, 36(3): 1–7, doi: 10.1007/s13131-016-0882-1
    Ji Jinlin, Dong Changming, Zhang Biao, et al. 2018. Oceanic eddy characteristics and generation mechanisms in the Kuroshio Extension region. Journal of Geophysical Research: Oceans, 123(11): 8548–8567, doi: 10.1029/2018JC014196
    Kouketsu S, Kaneko H, Okunishi T, et al. 2016. Mesoscale eddy effects on temporal variability of surface chlorophyll a in the Kuroshio Extension. Journal of Oceanography, 72(3): 439–451, doi: 10.1007/s10872-015-0286-4
    Liu Yingjie, Zheng Quanan, Li Xiaofeng. 2021. Characteristics of global ocean abnormal mesoscale eddies derived from the fusion of sea surface height and temperature data by deep learning. Geophysical Research Letters, 48(17): e2021GL094772, doi: 10.1029/2021GL094772
    Lv Mingkun, Wang Fan, Li Yuanlong, et al. 2022. Structure of sea surface temperature anomaly induced by mesoscale eddies in the North Pacific Ocean. Journal of Geophysical Research: Oceans, 127(3): e2021JC017581, doi: 10.1029/2021JC017581
    Ma Jing, Xu Haiming, Dong Changming, et al. 2015. Atmospheric responses to oceanic eddies in the Kuroshio Extension region. Journal of Geophysical Research: Atmospheres, 120(13): 6313–6330, doi: 10.1002/2014JD022930
    Mathis J T, Pickart R S, Hansell D A, et al. 2007. Eddy transport of organic carbon and nutrients from the Chukchi shelf: impact on the upper halocline of the western Arctic Ocean. Journal of Geophysical Research: Oceans, 112(C5): C05011, doi: 10.1029/2006JC003899
    Ni Qinbiao, Zhai Xiaoming, Jiang Xuemin, et al. 2021. Abundant cold anticyclonic eddies and warm cyclonic eddies in the global ocean. Journal of Physical Oceanography, 51(9): 2793–2806, doi: 10.1175/JPO-D-21-0010.1
    Ni Qinbiao, Zhai Xiaoming, Yang Zhibin, et al. 2023. Generation of cold anticyclonic eddies and warm cyclonic eddies in the tropical oceans. Journal of Physical Oceanography, 53(6): 1485–1498, doi: 10.1175/JPO-D-22-0197.1
    Pegliasco C, Delepoulle A, Mason E, et al. 2022. META3.1exp: a new global mesoscale eddy trajectory atlas derived from altimetry. Earth System Science Data, 14(3): 1087–1107, doi: 10.5194/essd-14-1087-2022
    Qiu Bo, Chen Shuiming, Schneider N. 2017. Dynamical links between the decadal variability of the Oyashio and Kuroshio extensions. Journal of Climate, 30(23): 9591–9605, doi: 10.1175/JCLI-D-17-0397.1
    Renault L, Masson S, Oerder V, et al. 2019. Disentangling the mesoscale ocean-atmosphere interactions. Journal of Geophysical Research: Oceans, 124(3): 2164–2178, doi: 10.1029/2018JC01 4628
    Shan Xuan, Jing Zhao, Gan Bolan, et al. 2020a. Surface heat flux induced by mesoscale eddies cools the Kuroshio-Oyashio Extension region. Geophysical Research Letters, 47(1): e2019GL086050, doi: 10.1029/2019GL086050
    Shan Xuan, Jing Zhao, Sun Bingrong, et al. 2020b. Impacts of ocean current-atmosphere interactions on mesoscale eddy energetics in the Kuroshio Extension region. Geoscience Letters, 7(1): 3, doi: 10.1186/s40562-020-00152-w
    Sun Wenjin, Dong Changming, Tan Wei, et al. 2019a. Statistical characteristics of cyclonic warm-core eddies and anticyclonic cold-core eddies in the North Pacific based on remote sensing data. Remote Sensing, 11(2): 208, doi: 10.3390/rs11020208
    Sun Shuangwen, Fang Yue, Zu Yongcan, et al. 2020. Seasonal characteristics of mesoscale coupling between the sea surface temperature and wind speed in the South China Sea. Journal of Climate, 33(2): 625–638, doi: 10.1175/JCLI-D-19-0392.1
    Sun Bowen, Li Baofu, Yan Jingyu, et al. 2022. Seasonal variation of atmospheric coupling with oceanic mesoscale eddies in the North Pacific Subtropical Countercurrent. Acta Oceanologica Sinica, 41(10): 109–118, doi: 10.1007/s13131-022-2022-4
    Sun Wenjin, Liu Yu, Chen Gengxin, et al. 2021. Three-dimensional properties of mesoscale cyclonic warm-core and anticyclonic cold-core eddies in the South China Sea. Acta Oceanologica Sinica, 40(10): 17–29, doi: 10.1007/s13131-021-1770-x
    Sun Bowen, Liu Chuanyu, Wang Fan. 2019b. Global meridional eddy heat transport inferred from Argo and altimetry observations. Scientific Reports, 9(1): 1345, doi: 10.1038/s41598-018-38069-2
    Xu Quanqian, Xu Haiming, Ma Jing. 2018. Air-sea relationship associated with mesoscale oceanic eddies over the subtropical North Pacific in summer. Chinese Journal of Atmospheric Sciences (in Chinese), 42(6): 1191–1207, doi: 10.3878/j.issn.1006-9895.1711.17180
    Yang Haiyuan, Qiu Bo, Chang Ping, et al. 2018. Decadal variability of eddy characteristics and energetics in the Kuroshio Extension: Unstable versus stable states. Journal of Geophysical Research: Oceans, 123(9): 6653–6669, doi: 10.1029/2018JC014081
    Yang Guang, Yu Weidong, Yuan Yeli, et al. 2015. Characteristics, vertical structures, and heat/salt transports of mesoscale eddies in the southeastern tropical Indian Ocean. Journal of Geophysical Research: Oceans, 120(10): 6733–6750, doi: 10.1002/2015JC 011130
    Yang Guangbing, Zheng Quanan, Xiong Xuejun. 2023. Subthermocline eddies carrying the Indonesian Throughflow water observed in the southeastern tropical Indian Ocean. Acta Oceanologica Sinica, 42(5): 1–13, doi: 10.1007/s13131-022-2085-2
    Yao Hengkai, Ma Chao, Jing Zhao, et al. 2023. On the vertical structure of mesoscale eddies in the Kuroshio-Oyashio Extension. Geophysical Research Letters, 50(24): e2023GL105642, doi: 10.1029/2023GL105642
    Yu Fangjie, Wang Zeyuan, Liu Shuai, et al. 2021. Inversion of the three-dimensional temperature structure of mesoscale eddies in the Northwest Pacific based on deep learning. Acta Oceanologica Sinica, 40(10): 176–186, doi: 10.1007/s13131-021-1841-z
    Zu Yongcan, Sun Shuangwen, Zhao Wei, et al. 2019. Seasonal characteristics and formation mechanism of the thermohaline structure of mesoscale eddy in the South China Sea. Acta Oceanologica Sinica, 38(4): 29–38, doi: 10.1007/s13131-018-1222-4
  • 加载中
图(10)
计量
  • 文章访问数:  338
  • HTML全文浏览量:  158
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-01
  • 录用日期:  2024-02-29
  • 网络出版日期:  2024-05-13
  • 刊出日期:  2024-05-30

目录

    /

    返回文章
    返回