Volume 40 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
Wanwan Cao, Yan Chang, Shan Jiang, Jian Li, Zhenqiu Zhang, Jie Jin, Jianguo Qu, Guosen Zhang, Jing Zhang. Spatial distribution and behavior of dissolved selenium speciation in the South China Sea and Malacca Straits during spring inter-monsoon period[J]. Acta Oceanologica Sinica, 2021, 40(8): 1-13. doi: 10.1007/s13131-021-1804-4
Citation: Wanwan Cao, Yan Chang, Shan Jiang, Jian Li, Zhenqiu Zhang, Jie Jin, Jianguo Qu, Guosen Zhang, Jing Zhang. Spatial distribution and behavior of dissolved selenium speciation in the South China Sea and Malacca Straits during spring inter-monsoon period[J]. Acta Oceanologica Sinica, 2021, 40(8): 1-13. doi: 10.1007/s13131-021-1804-4

Spatial distribution and behavior of dissolved selenium speciation in the South China Sea and Malacca Straits during spring inter-monsoon period

doi: 10.1007/s13131-021-1804-4
Funds:  The National Natural Science Foundation of China under contract Nos 41876071, 41476065 and 41806096; the Biogeochemical Cycle and Biodiversity Regulation Function of Biogenic Elements in the Indo-Pacific Confluence Area under contract No. 42090043.
More Information
  • Corresponding author: E-mail: wwcaostu@163.com
  • Received Date: 2020-08-11
  • Accepted Date: 2020-11-25
  • Available Online: 2021-07-12
  • Publish Date: 2021-08-31
  • Selenium (Se) has been recognized as a key trace element that is associated with growth of primary producers in oceans. During March and May 2018, surface water (67 samples) was collected and measured by HG-ICP-MS to investigate the distribution and behavior of selenite [Se(IV)], selenate [Se(VI)] and dissolved organic selenides (DOSe) concentrations in the Zhujiang River Estuary (ZRE), South China Sea (SCS) and Malacca Straits (MS). It showed that Se(IV) (0.14–3.44 nmol/L) was the dominant chemical species in the ZRE, related to intensive manufacture in the watershed; while the major species shifted to DOSe (0.05–0.79 nmol/L) in the MS, associated with the wide coverage of peatland and intensive agriculture activities in the Malaysian Peninsula. The SCS was identified as the northern and southern sections (NSCS and SSCS) based on the variations of surface circulation. The insignificant variation of Se(IV) in the NSCS and SSCS was obtained in March, potentially resulting from the high chemical activity and related preferential assimilation by phytoplankton communities. Contrastively, the lower DOSe concentrations in the SSCS likely resulted from higher primary production and utilization during March. During May, the concentration of Se(IV) remained low in the NSCS and SSCS, while DOSe concentrations increased notably in the SSCS, likely due to the impact of terrestrial inputs from surface current reversal and subsequent accumulation. On a global scale, DOSe is the dominant Se species in tropical oceans, while Se(IV) and Se(VI) are major fractions in high-latitude oceans, resulting from changes in predominated phytoplankton and related biological assimilation.
  • loading
  • [1]
    Aono T, Nakaguchi Y, Hiraki K. 1991. Vertical profiles of dissolved selenium in the North Pacific. Geochemical Journal, 25(1): 45–55. doi: 10.2343/geochemj.25.45
    [2]
    Araie H, Shiraiwa Y. 2016. Selenium in algae. In: Borowitzka M A, Beardall J, Raven J A, eds. The Physiology of Microalgae. Cham, Switzerland: Springer, 281–288, doi: 10.1007/978-3-319-24945-2
    [3]
    Baines S B, Fisher N S. 2001. Interspecific differences in the bioconcentration of selenite by phytoplankton and their ecological implications. Marine Ecology Progress Series, 213: 1–12. doi: 10.3354/meps213001
    [4]
    Baines S B, Fisher N S, Doblin M A, et al. 2001. Uptake of dissolved organic selenides by marine phytoplankton. Limnology and Oceanography, 46(8): 1936–1944. doi: 10.4319/lo.2001.46.8.1936
    [5]
    Baum A, Rixen T, Samiaji J. 2007. Relevance of peat draining rivers in central Sumatra for the riverine input of dissolved organic carbon into the ocean. Estuarine, Coastal and Shelf Science, 73(3–4): 563–570. doi: 10.1016/j.ecss.2007.02.012
    [6]
    Besser J M, Huckins J N, Clark R C. 1994. Separation of selenium species released from Se-exposed algae. Chemosphere, 29(4): 771–780. doi: 10.1016/0045-6535(94)90045-0
    [7]
    Böck A, Forchhammer K, Heider J, et al. 1991. Selenocysteine: the 21st amino acid. Molecular Microbiology, 5(3): 515–520. doi: 10.1111/j.1365-2958.1991.tb00722.x
    [8]
    Chang Yan, Müller M, Wu Ying, et al. 2020. Distribution and behaviour of dissolved selenium in tropical peatland-draining rivers and estuaries of Malaysia. Biogeosciences, 17(4): 1133–1145. doi: 10.5194/bg-17-1133-2020
    [9]
    Chang Yan, Qu Jianguo, Zhang Ruifeng, et al. 2014. Determination of inorganic selenium speciation in natural water by sector field inductively coupled plasma mass spectrometry combined with hydride generation. Chinese Journal of Analytical Chemistry (in Chinese), 42(5): 753–758. doi: 10.3724/SP.J.1096.2014.40006
    [10]
    Chang Yan, Zhang Jing, Qu Jianguo, et al. 2016. The behavior of dissolved inorganic selenium in the Changjiang Estuary. Journal of Marine Systems, 154: 110–121. doi: 10.1016/j.jmarsys.2015.01.008
    [11]
    Chen Guobao, Li Yongzhen, Chen Xinjun. 2007. Species diversity of fishes in the coral reefs of South China Sea. Biodiversity Science (in Chinese), 15(4): 373–381. doi: 10.1360/biodiv.060268
    [12]
    Chen C T A, Wang Shulun, Wang B J, et al. 2001. Nutrient budgets for the South China Sea Basin. Marine Chemistry, 75(4): 281–300. doi: 10.1016/S0304-4203(01)00041-X
    [13]
    Cutter G A. 1982. Selenium in reducing waters. Science, 217(4562): 829–831. doi: 10.1126/science.217.4562.829
    [14]
    Cutter G A. 1989. The estuarine behaviour of selenium in San Francisco Bay. Estuarine, Coastal and Shelf Science, 28(1): 13–34. doi: 10.1016/0272-7714(89)90038-3
    [15]
    Cutter G A. 2005. Biogeochemistry: now and into the future. Palaeogeography, Palaeoclimatology, Palaeoecology, 219(1–2): 191–198. doi: 10.1016/j.palaeo.2004.10.021
    [16]
    Cutter G A, Bruland K W. 1984. The marine biogeochemistry of selenium: A re-evaluation. Limnology and Oceanography, 29(6): 1179–1192. doi: 10.4319/lo.1984.29.6.1179
    [17]
    Cutter G A, Cutter L S. 1995. Behavior of dissolved antimony, arsenic, and selenium in the Atlantic Ocean. Marine Chemistry, 49(4): 295–306. doi: 10.1016/0304-4203(95)00019-N
    [18]
    Cutter G A, Cutter L S. 1998. Metalloids in the high latitude North Atlantic Ocean: sources and internal cycling. Marine Chemistry, 61(1–2): 25–36. doi: 10.1016/S0304-4203(98)00005-X
    [19]
    Cutter G A, Cutter L S. 2001. Sources and cycling of selenium in the western and equatorial Atlantic Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 48(13): 2917–2931. doi: 10.1016/S0967-0645(01)00024-8
    [20]
    Cutter G A, Cutter L S. 2004. Selenium biogeochemistry in the San Francisco Bay estuary: changes in water column behavior. Estuarine, Coastal and Shelf Science, 61(3): 463–476. doi: 10.1016/j.ecss.2004.06.011
    [21]
    De Boissieu F, Menkes C, Dupouy C, et al. 2014. Phytoplankton global mapping from space with a support vector machine algorithm. In: Proceedings of SPIE 9261, Ocean Remote Sensing and Monitoring from Space. Beijing: SPIE, 1–14, doi: 10.1117/12.2083730
    [22]
    Du Chuanjun, Liu Zhiyu, Kao S J, et al. 2013. Impact of the Kuroshio intrusion on the nutrient inventory in the upper northern South China Sea: insights from an isopycnal mixing model. Biogeosciences, 10(10): 6419–6432. doi: 10.5194/bg-10-6419-2013
    [23]
    Duan Liqin, Song Jinming, Li Xuegang, et al. 2010. Distribution of selenium and its relationship to the eco-environment in Bohai Bay seawater. Marine Chemistry, 121(1–4): 87–99. doi: 10.1016/j.marchem.2010.03.007
    [24]
    Ebina J, Tsutsui T, Shirai T. 1983. Simultaneous determination of total nitrogen and total phosphorus in water using peroxodisulfate oxidation. Water Research, 17(12): 1721–1726. doi: 10.1016/0043-1354(83)90192-6
    [25]
    Fang Guohong, Fang Wendong, Fang Yue, et al. 1998. A survey of studies on the South China Sea upper ocean circulation. Acta Oceanographica Taiwanica, 37(1): 1–16
    [26]
    Fang Guohong, Wang Yonggang, Wei Zexun, et al. 2009. Interocean circulation and heat and freshwater budgets of the South China Sea based on a numerical model. Dynamics of Atmospheres and Oceans, 47(1–3): 55–72. doi: 10.1016/j.dynatmoce.2008.09.003
    [27]
    Flombaum P, Gallegos J L, Gordillo R A, et al. 2013. Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. Proceedings of the National Academy of Sciences of the United States of America, 110(24): 9824–9829. doi: 10.1073/pnas.1307701110
    [28]
    Harrison P J, Yu P W, Thompson P A, et al. 1988. Survey of selenium requirements in marine phytoplankton. Marine Ecology Progress Series, 47(1): 89–96. doi: 10.3354/meps047089
    [29]
    Hattori H, Nakaguchi Y, Kimura M, et al. 2001. Distributions of dissolved selenium species in the Eastern Indian Ocean. Bulletin of the Society of Sea Water Science, Japan, 55(3): 175–182
    [30]
    Hu Jianyu, Kawamura H, Hong H S, et al. 2000. A review on the currents in the South China Sea: Seasonal circulation, South China Sea Warm Current and Kuroshio intrusion. Journal of Oceanography, 56(6): 607–624. doi: 10.1023/A:1011117531252
    [31]
    Hu Minghui, Yang Yiping, Wang Genfang. 1996. Chemical behaviour of Selenium in Jiulong Estuary. Journal of Oceanography in Taiwan Strait (in Chinese), 15(1): 41–47
    [32]
    Ibrahim A S A, Al-Farawati R. 2017. Selenium determination, distribution, behavior, sources, and its relationship to the physico-chemical parameters in coastal polluted lagoon along Jeddah Coast, Red Sea. Indian Journal of Geo-Marine Sciences, 46(7): 1298–1306
    [33]
    Ivanenko N V. 2018. The role of microorganisms in transformation of selenium in marine waters. Russian Journal of Marine Biology, 44(2): 87–93. doi: 10.1134/S1063074018020049
    [34]
    Jiang Shan, Lu Haoliang, Liu Jingchun, et al. 2018. Influence of seasonal variation and anthropogenic activity on phosphorus cycling and retention in mangrove sediments: a case study in China. Estuarine, Coastal and Shelf Science, 202: 134–144. doi: 10.1016/j.ecss.2017.12.011
    [35]
    Jiang Shan, Müller M, Jin Jie, et al. 2019. Dissolved inorganic nitrogen in a tropical estuary in Malaysia: transport and transformation. Biogeosciences, 16(14): 2821–2836. doi: 10.5194/bg-16-2821-2019
    [36]
    Li Teng, Bai Yan, Chen Xiaoyan, et al. 2017. Longtime variation of phytoplankton in the South China Sea from the perspective of carbon fixation. In: Proceedings of SPIE 10422, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2017. Warsaw, Poland: SPIE, doi: 10.1117/12.2278038
    [37]
    Liu Fenfen, Chen Chuqun. 2012. Remote sensing study of the seasonal distribution of phytoplankton groups in the South China Sea. In: Proceedings of 2012 IEEE International Geoscience and Remote Sensing Symposium. Munich, Germany: IEEE, 2563–2566, doi: 10.1109/IGARSS.2012.6350956
    [38]
    Liu Jianan, Du Jinzhou, Wu Ying, et al. 2018. Nutrient input through submarine groundwater discharge in two major Chinese estuaries: the Pearl River Estuary and the Changjiang River Estuary. Estuarine, Coastal and Shelf Science, 203: 17–28. doi: 10.1016/j.ecss.2018.02.005
    [39]
    Looi L J, Aris A Z, Johari W L W, et al. 2013. Baseline metals pollution profile of tropical estuaries and coastal waters of the Straits of Malacca. Marine Pollution Bulletin, 74(1): 471–476. doi: 10.1016/j.marpolbul.2013.06.008
    [40]
    Mason R P, Soerensen A L, DiMento B P, et al. 2018. The global marine selenium cycle: Insights from measurements and modeling. Global Biogeochemical Cycles, 32(12): 1720–1737. doi: 10.1029/2018GB006029
    [41]
    Measures C I, Burton J D. 1980. The vertical distribution and oxidation states of dissolved selenium in the northeast Atlantic Ocean and their relationship to biological processes. Earth and Planetary Science Letters, 46(3): 385–396. doi: 10.1016/0012-821X(80)90052-7
    [42]
    Measures C I, Grant B C, Mangum B J, et al. 1983. The relationship of the distribution of dissolved selenium IV and VI in three oceans to physical and biological processes. In: Wong C S, Boyle E, Bruland K W, et al, eds. Trace Metals in Sea Water. Boston, MA, USA: Springer, 73–83, doi: 10.1007/978-1-4757-6864-0_4
    [43]
    Measures C I, McDuff R E, Edmond J M. 1980. Selenium redox chemistry at GEOSECS I re-occupation. Earth and Planetary Science Letters, 49(1): 102–108. doi: 10.1016/0012-821X(80)90152-1
    [44]
    Nakaguchi Y, Takei M, Hattori H, et al. 2004. Dissolved selenium species in the Sulu Sea, the South China Sea and the Celebes Sea. Geochemical Journal, 38(6): 571–580. doi: 10.2343/geochemj.38.571
    [45]
    Nan Feng, Xue Huijie, Yu Fei. 2015. Kuroshio intrusion into the South China Sea: a review. Progress in Oceanography, 137: 314–333. doi: 10.1016/j.pocean.2014.05.012
    [46]
    Rizal S, Setiawan I, Iskandar T, et al. 2010. Currents simulation in the Malacca Straits by using three-dimensional numerical model. Sains Malaysiana, 39(4): 519–524
    [47]
    Rue E L, Smith G J, Cutter G A, et al. 1997. The response of trace element redox couples to suboxic conditions in the water column. Deep-Sea Research Part I: Oceanographic Research Papers, 44(1): 113–134. doi: 10.1016/S0967-0637(96)00088-X
    [48]
    Sugimura Y, Suzuki Y, Miyake Y. 1976. The content of selenium and its chemical form in sea water. Journal of Oceanography, 32(5): 235–241. doi: 10.1007/BF02107126
    [49]
    Takayanagi K, Wong G T F. 1985. Dissolved inorganic and organic selenium in the Orca Basin. Geochimica et Cosmochimica Acta, 49(2): 539–546. doi: 10.1016/0016-7037(85)90045-6
    [50]
    Thia-Eng C, Gorre I R L, Ross S A, et al. 2000. The Malacca Straits. Marine Pollution Bulletin, 41(1–6): 160–178. doi: 10.1016/S0025-326X(00)00108-9
    [51]
    Wake B D, Hassler C S, Bowie A R, et al. 2012. Phytoplankton selenium requirements: The case for species isolated from temperate and polar regions of the southern hemisphere. Journal of Phycology, 48(3): 585–594. doi: 10.1111/j.1529-8817.2012.01153.x
    [52]
    Wambaugh, Z. 2017. Selenium distribution and cycling in the eastern equatorial Pacific Ocean [dissertation]. Virginia: Old Dominion University, doi: 10.25777/b1px-gm84
    [53]
    Wang Wenxiong, Dei R C H. 2001. Effects of major nutrient additions on metal uptake in phytoplankton. Environmental Pollution, 111(2): 233–240. doi: 10.1016/S0269-7491(00)00071-3
    [54]
    Wang Guihua, Su Jilan, Qi Yiquan. 2005. Advances in studying mesoscale eddies in South China Sea. Advances in Earth Science (in Chinese), 20(8): 882–886
    [55]
    Wang Jiujuan, Tang Danling. 2014. Phytoplankton patchiness during spring intermonsoon in western coast of South China Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 101: 120–128. doi: 10.1016/j.dsr2.2013.09.020
    [56]
    Wei Na, Satheeswaran T, Jenkinson I R, et al. 2018. Factors driving the spatiotemporal variability in phytoplankton in the northern South China Sea. Continental Shelf Research, 162: 48–55. doi: 10.1016/j.csr.2018.04.009
    [57]
    Wen Hanjie, Carignan J. 2007. Reviews on atmospheric selenium: emissions, speciation and fate. Atmospheric Environment, 41(34): 7151–7165. doi: 10.1016/j.atmosenv.2007.07.035
    [58]
    Wit F, Müller D, Baum A, et al. 2015. The impact of disturbed peatlands on river outgassing in Southeast Asia. Nature Communications, 6: 10155. doi: 10.1038/ncomms10155
    [59]
    Wu Ying, Zhu Kun, Zhang Jing, et al. 2019. Distribution and degradation of terrestrial organic matter in the sediments of peat-draining rivers, Sarawak, Malaysian Borneo. Biogeosciences, 16(22): 4517–4533. doi: 10.5194/bg-16-4517-2019
    [60]
    Xia Weiping, Zhang Haishen, Tan Jianan. 1996. Biogeochemical cycles of selenium in Antarctic water. Journal of Environmental Sciences, 8(1): 120–126
    [61]
    Yao Qingzhen, Zhang Jing, Jian Huimin. 2006. The speciation and distribution of selenium in the Zhujiang Estuary. Haiyang Xuebao (in Chinese), 28(1): 152–157. doi: 10.3321/j.issn:0253-4193.2006.01.022
    [62]
    Yuan Dongliang, Han Weiqing, Hu Dunxin. 2006. Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. Journal of Geophysical Research: Oceans, 111(C11): C11007. doi: 10.1029/2005JC003412
    [63]
    Zeng Lili, Wang Dongxiao, Chen Ju, et al. 2016. SCSPOD14, a South China Sea physical oceanographic dataset derived from in situ measurements during 1919–2014. Scientific Data, 3: 160029. doi: 10.1038/sdata.2016.29
  • AOS-40-8-CaoWanwan-supplementary.pdf
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (684) PDF downloads(36) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return