Volume 41 Issue 9
Aug.  2022
Turn off MathJax
Article Contents
Fangjie Yu, Meiyu Wang, Sijia Qian, Ge Chen. Multisatellite observations of smaller mesoscale eddy generation in the Kuroshio Extension[J]. Acta Oceanologica Sinica, 2022, 41(9): 137-148. doi: 10.1007/s13131-022-1996-2
Citation: Fangjie Yu, Meiyu Wang, Sijia Qian, Ge Chen. Multisatellite observations of smaller mesoscale eddy generation in the Kuroshio Extension[J]. Acta Oceanologica Sinica, 2022, 41(9): 137-148. doi: 10.1007/s13131-022-1996-2

Multisatellite observations of smaller mesoscale eddy generation in the Kuroshio Extension

doi: 10.1007/s13131-022-1996-2
Funds:  The Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) under contract Nos 2022QNLM050301-4 and 2021WHZZB1705; the National Natural Science Foundation of China under contract Nos 41527901 and 42030406; the National Key R&D Program of China under contract No. 2019YFD0901001.
More Information
  • Corresponding author: E-mail: gechen@ouc.edu.cn
  • Received Date: 2021-07-19
  • Accepted Date: 2021-12-13
  • Available Online: 2022-06-10
  • Publish Date: 2022-08-31
  • Smaller mesoscale eddies (SMEs) have an important effect on the transmission of ocean temperatures, salinity, energy, and marine biochemical processes. However, traditional altimeters, the dominant sensors used to identify and track eddies, have made it challenging to observe SMEs accurately due to resolution limitations. Eddies drive local upwelling or downwelling, leaving signatures on sea surface temperatures (SSTs) and chlorophyll concentrations (Chls). SST can be observed by spaceborne infrared sensors, and Chl can be measured by ocean color remote sensing. Therefore, multisatellite observations provide an opportunity to obtain information to characterize SMEs. In this paper, an eddy detection algorithm based on SST and Chl images is proposed, which identifies eddies by characterizing the spatial and temporal distribution of SST and Chl data. The algorithm is applied to characterize and analyze SMEs in the Kuroshio Extension. Statistical results on their distribution and seasonal variability are shown, and the formation processes are preliminarily discussed. SMEs generation may be contributed by horizontal strain instability, the interaction of topographic obstacles and currents, and wind stress curl.
  • loading
  • [1]
    Abhishek P, Sil S. 2019. Validation of multi-scale ultra-high resolution (MUR) sea surface temperature with coastal buoys observations and applications for coastal fronts in the Bay of Bengal. In: Proceedings of 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC). New Delhi, India: IEEE
    Alpers W, Brandt P, Lazar A, et al. 2013. A small-scale oceanic eddy off the coast of West Africa studied by multi-sensor satellite and surface drifter data. Remote Sensing of Environment, 129: 132–143. doi: 10.1016/j.rse.2012.10.032
    Capet X, McWilliams J C, Molemaker M J, et al. 2008. Mesoscale to submesoscale transition in the California current system. Part I: flow structure, eddy flux, and observational tests. Journal of Physical Oceanography, 38(1): 29–43. doi: 10.1175/2007JPO3671.1
    Chelton D B, Gaube P, Schlax M G, et al. 2011. The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll. Science, 334(6054): 328–332. doi: 10.1126/science.1208897
    Chen Ge, Tang Junwu, Zhao Chaofang, et al. 2019. Concept design of the “Guanlan” science mission: China’s novel contribution to space oceanography. Frontiers in Marine Science, 6: 194. doi: 10.3389/fmars.2019.00194
    Chen Baiyang, Xie Lingling, Zheng Quanan, et al. 2020. Seasonal variability of mesoscale eddies in the Banda Sea inferred from altimeter data. Acta Oceanologica Sinica, 39(12): 11–20. doi: 10.1007/s13131-020-1665-2
    Dandapat S, Chakraborty A. 2016. Mesoscale eddies in the western Bay of Bengal as observed from satellite altimetry in 1993–2014: statistical characteristics, variability and three-dimensional properties. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(11): 5044–5054. doi: 10.1109/JSTARS.2016.2585179
    Dong Changming, Nencioli F, Liu Yu, et al. 2011. An automated approach to detect oceanic eddies from satellite remotely sensed sea surface temperature data. IEEE Geoscience and Remote Sensing Letters, 8(6): 1055–1059. doi: 10.1109/LGRS.2011.2155029
    Durand M, Fu Lee-Lueng, Lettenmaier D P, et al. 2010. The surface water and ocean topography mission: observing terrestrial surface water and oceanic submesoscale eddies. Proceedings of the IEEE, 98(5): 766–779. doi: 10.1109/JPROC.2010.2043031
    Frenger I, Gruber N, Knutti R, et al. 2013. Imprint of Southern Ocean eddies on winds, clouds and rainfall. Nature Geoscience, 6(8): 608–612. doi: 10.1038/ngeo1863
    Fu Lee Lueng, Le Traon P Y. 2006. Satellite altimetry and ocean dynamics. Comptes Rendus Geoscience, 338(14−15): 1063–1076. doi: 10.1016/j.crte.2006.05.015
    Gaultier L, Ubelmann C, Fu Lee-Lueng. 2016. The challenge of using future SWOT data for oceanic field reconstruction. Journal of Atmospheric and Oceanic Technology, 33(1): 119–126. doi: 10.1175/JTECH-D-15-0160.1
    Gula J, Molemaker M J, McWilliams J C. 2015. Topographic vorticity generation, submesoscale instability and vortex street formation in the Gulf Stream. Geophysical Research Letters, 42(10): 4054–4062. doi: 10.1002/2015GL063731
    Gula J, Molemaker M J, McWilliams J C. 2016. Topographic generation of submesoscale centrifugal instability and energy dissipation. Nature Communications, 7(1): 12811. doi: 10.1038/ncomms12811
    Hansen D V, Poulain P M. 1996. Quality control and interpolations of WOCE-TOGA drifter data. Journal of Atmospheric and Oceanic Technology, 13(4): 900–909. doi: 10.1175/1520-0426(1996)013<0900:QCAIOW>2.0.CO;2
    He Yinghui, Feng Ming, Xie Jieshuo, et al. 2017. Spatiotemporal variations of mesoscale eddies in the Sulu Sea. Journal of Geophysical Research: Oceans, 122(10): 7867–7879. doi: 10.1002/2017JC013153
    Hsu P C, Ho C Y, Lee H J, et al. 2020. Temporal variation and spatial structure of the Kuroshio-induced submesoscale island vortices observed from GCOM-C and Himawari-8 data. Remote Sensing, 12(5): 883. doi: 10.3390/rs12050883
    Hu Chuanmin, Lee Zhongping, Franz B. 2012. Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference. Journal of Geophysical Research: Oceans, 117(C1): C01011
    Huang Xueping, Zhou Xinhua, Wang Zhiqiang, et al. 2012. CD99 triggers upregulation of mir-9-modulated PRDM1/BLIMP1 in Hodgkin/Reed-Sternberg cells and induces redifferentiation. International Journal of Cancer, 131(4): E382–E394. doi: 10.1002/ijc.26503
    Isoguchi O, Shimada M, Sakaida F, et al. 2009. Investigation of Kuroshio-induced cold-core eddy trains in the lee of the Izu islands using high-resolution satellite images and numerical simulations. Remote Sensing of Environment, 113(9): 1912–1925. doi: 10.1016/j.rse.2009.04.017
    Ji Jinlin, Dong Changming, Zhang Biao, et al. 2018. Oceanic eddy characteristics and generation mechanisms in the Kuroshio Extension region. Journal of Geophysical Research: Oceans, 123(11): 8548–8567. doi: 10.1029/2018JC014196
    Jia Yinglai, Chen Longjing, Liu Qinyu, et al. 2019. The role of background wind and moisture in the atmospheric response to oceanic eddies during winter in the Kuroshio Extension region. Atmosphere, 10(9): 5279
    Klein P, Lapeyre G. 2009. The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annual Review of Marine Science, 1: 351–375. doi: 10.1146/annurev.marine.010908.163704
    Kubryakov A A, Stanichny S V. 2015. Seasonal and interannual variability of the black sea eddies and its dependence on characteristics of the large-scale circulation. Deep-Sea Research Part I: Oceanographic Research Papers, 97: 80–91. doi: 10.1016/j.dsr.2014.12.002
    Li Jianing, Dong Jihai, Yang Qingxuan, et al. 2019a. Spatial-temporal variability of submesoscale currents in the South China Sea. Journal of Oceanology and Limnology, 37(2): 474–485. doi: 10.1007/s00343-019-8077-1
    Li Jitao, Liang Yongquan, Zhang Jie, et al. 2019b. A new automatic oceanic mesoscale eddy detection method using satellite altimeter data based on density clustering. Acta Oceanologica Sinica, 38(5): 134–141. doi: 10.1007/s13131-019-1447-x
    Li Yuheng, Sun Weifu, Zhang Jie, et al. 2021. Reconstruction of arctic SST data and generation of multi-source satellite fusion products with high temporal and spatial resolutions. Remote Sensing Letters, 12(7): 695–703. doi: 10.1080/2150704X.2021.1931531
    Luo Shihao, Jing Zhiyou, Qi Yiquan. 2020. Submesoscale flows associated with convergent strain in an anticyclonic eddy of the Kuroshio Extension: a high-resolution numerical study. Ocean Science Journal, 55(2): 249–264. doi: 10.1007/s12601-020-0022-x
    McGillicuddy Jr D J. 2016. Mechanisms of physical-biological-biogeochemical interaction at the oceanic mesoscale. Annual Review of Marine Science, 8: 125–159. doi: 10.1146/annurev-marine-010814-015606
    McWilliams J C, Colas F, Molemaker M J. 2009. Cold filamentary intensification and oceanic surface convergence lines. Geophysical Research Letters, 36(18): L18602. doi: 10.1029/2009GL039402
    Munk W. 2001. Spirals on the sea. Scientia Marina, 65(S2): 193–198. doi: 10.3989/scimar.2001.65s2193
    Nencioli F, Dong Changming, Dickey T, et al. 2010. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight. Journal of Atmospheric and Oceanic Technology, 27(3): 564–579. doi: 10.1175/2009JTECHO725.1
    Qian Sijia, Yu Fangjie, Chen Ge. 2021. Distribution characteristics of eddies with a scale of 50~100 km in the Kuroshio Extension Region. Marine Sciences, 45(11): 10–19
    Qiu Bo, Chen Shuiming. 2005. Eddy-induced heat transport in the subtropical North Pacific from Argo, TMI, and altimetry measurements. Journal of Physical Oceanography, 35(4): 458–473. doi: 10.1175/JPO2696.1
    Qiu Bo, Chen Shuiming. 2010. Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system. Deep-Sea Research Part II: Topical Studies in Oceanography, 57(13−14): 1098–1110. doi: 10.1016/j.dsr2.2008.11.036
    Qiu Bo, Kelly K A, Joyce T M. 1991. Mean flow and variability in the Kuroshio Extension from Geosat altimetry data. Journal of Geophysical Research: Oceans, 96(C10): 18491–18507. doi: 10.1029/91JC01834
    Rubio A, Caballero A, Orfila A, et al. 2018. Eddy-induced cross-shelf export of high Chl-a coastal waters in the SE Bay of Biscay. Remote Sensing of Environment, 205: 290–304. doi: 10.1016/j.rse.2017.10.037
    Sasai Y, Richards K J, Ishida A, et al. 2010. Effects of cyclonic mesoscale eddies on the marine ecosystem in the Kuroshio Extension region using an eddy-resolving coupled physical-biological model. Ocean Dynamics, 60(3): 693–704. doi: 10.1007/s10236-010-0264-8
    Sasaki H, Klein P, Qiu Bo, et al. 2014. Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere. Nature Communications, 5(1): 5636. doi: 10.1038/ncomms6636
    Shafeeque M, Balchand A N, Shah P, et al. 2021. Spatio-temporal variability of chlorophyll-a in response to coastal upwelling and mesoscale eddies in the South Eastern Arabian Sea. International Journal of Remote Sensing, 42(13): 4840–4867
    Shan Xuan, Jing Zhao, Sun Bingrong, et al. 2020. Impacts of ocean current-atmosphere interactions on mesoscale eddy energetics in the Kuroshio Extension region. Geoscience Letters, 7(1): 3. doi: 10.1186/s40562-020-00152-w
    Su Zhan, Wang Jinbo, Klein P, et al. 2018. Ocean submesoscales as a key component of the global heat budget. Nature Communications, 9: 775. doi: 10.1038/s41467-018-02983-w
    Sun Shuangwen, Fang Yue, Liu Baochao, et al. 2016. Coupling between SST and wind speed over mesoscale eddies in the South China Sea. Ocean Dynamics, 66(11): 1467–1474. doi: 10.1007/s10236-016-0993-4
    Taburet G, Sanchez-Roman A, Ballarotta M, et al. 2019. DUACS DT2018: 25 years of reprocessed sea level altimetry products. Ocean Science, 15(5): 1207–1224. doi: 10.5194/os-15-1207-2019
    Tedesco P, Gula J, Ménesguen C, et al. 2019. Generation of submesoscale frontal eddies in the Agulhas current. Journal of Geophysical Research: Oceans, 124(11): 7606–7625. doi: 10.1029/2019JC015229
    Trott C B, Subrahmanyam B, Nyadjro E S. 2019. Influence of mesoscale features on mixed layer dynamics in the Arabian Sea. Journal of Geophysical Research: Oceans, 124(5): 3361–3377. doi: 10.1029/2019JC014965
    Uchiyama Y, Suzue Y, Yamazaki H. 2017. Eddy-driven nutrient transport and associated upper-ocean primary production along the Kuroshio. Journal of Geophysical Research: Oceans, 122(6): 5046–5062. doi: 10.1002/2017JC012847
    Wang Jiahao, Mao Kefeng, Chen Xi, et al. 2020. Evolution and structure of the Kuroshio Extension front in spring 2019. Journal of Marine Science and Engineering, 8(7): 502. doi: 10.3390/jmse8070502
    Williams R G. 2011. Ocean eddies and plankton blooms. Nature Geoscience, 4(11): 739–740. doi: 10.1038/ngeo1307
    Yang Yang, San Liang X. 2018. On the seasonal eddy variability in the Kuroshio Extension. Journal of Physical Oceanography, 48(8): 1675–1689. doi: 10.1175/JPO-D-18-0058.1
    Yang Xiao, Xu Guangjun, Liu Yu, et al. 2020. Multi-source data analysis of mesoscale eddies and their effects on surface chlorophyll in the bay of Bengal. Remote Sensing, 12(21): 3485. doi: 10.3390/rs12213485
    Yasuda I, Okuda K, Hirai M. 1992. Evolution of a Kuroshio warm-core ring-variability of the hydrographic structure. Deep-Sea Research Part A. Oceanographic Research Papers, 39(S1): S131–S161
    Zatsepin A, Kubryakov A, Aleskerova A, et al. 2019. Physical mechanisms of submesoscale eddies generation: evidences from laboratory modeling and satellite data in the Black Sea. Ocean Dynamics, 69(2): 253–266. doi: 10.1007/s10236-018-1239-4
    Zhang Yingjun, Hu Chuanmin, Liu Yonggang, et al. 2019a. Submesoscale and mesoscale eddies in the Florida Straits: observations from satellite ocean color measurements. Geophysical Research Letters, 46(22): 13262–13270. doi: 10.1029/2019GL083999
    Zhang Zhengguang, Qiu Bo. 2018. Evolution of submesoscale ageostrophic motions through the life cycle of oceanic mesoscale eddies. Geophysical Research Letters, 45(21): 11847–11855. doi: 10.1029/2018GL080399
    Zhang Zhengguang, Qiu Bo. 2020. Surface chlorophyll enhancement in mesoscale eddies by submesoscale spiral bands. Geophysical Research Letters, 47(14): e2020GL088820
    Zhang Zhengguang, Qiu Bo, Klein P, et al. 2019b. The influence of geostrophic strain on oceanic ageostrophic motion and surface chlorophyll. Nature Communications, 10(1): 2838. doi: 10.1038/s41467-019-10883-w
    Zhang Zhiwei, Tian Jiwei, Qiu Bo, et al. 2016. Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea. Scientific Reports, 6: 24349. doi: 10.1038/srep24349
    Zhang Chunhua, Xi Xiaoliang, Liu Songtao, et al. 2014. A mesoscale eddy detection method of specific intensity and scale from SSH image in the South China Sea and the Northwest Pacific. Science China Earth Sciences, 57(8): 1897–1906. doi: 10.1007/s11430-014-4839-y
    Zhang Zhiwei, Zhang Yuchen, Qiu Bo, et al. 2020. Spatiotemporal characteristics and generation mechanisms of submesoscale currents in the northeastern South China Sea revealed by numerical simulations. Journal of Geophysical Research: Oceans, 125(2): e2019JC015404
    Zheng Shaojun, Du Yan, Li Jiaxun, et al. 2015. Eddy characteristics in the South Indian Ocean as inferred from surface drifters. Ocean Science, 11(3): 361–371. doi: 10.5194/os-11-361-2015
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views (239) PDF downloads(18) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint