Volume 41 Issue 9
Aug.  2022
Turn off MathJax
Article Contents
K M Azam Chowdhury, Wensheng Jiang, Changwei Bian, Guimei Liu, Md Kawser Ahmed, Shaila Akhter. Contributions of shortwave radiation to the formation of temperature inversions in the Bay of Bengal and eastern equatorial Indian Ocean: A modeling approach[J]. Acta Oceanologica Sinica, 2022, 41(9): 19-37. doi: 10.1007/s13131-022-1998-0
Citation: K M Azam Chowdhury, Wensheng Jiang, Changwei Bian, Guimei Liu, Md Kawser Ahmed, Shaila Akhter. Contributions of shortwave radiation to the formation of temperature inversions in the Bay of Bengal and eastern equatorial Indian Ocean: A modeling approach[J]. Acta Oceanologica Sinica, 2022, 41(9): 19-37. doi: 10.1007/s13131-022-1998-0

Contributions of shortwave radiation to the formation of temperature inversions in the Bay of Bengal and eastern equatorial Indian Ocean: A modeling approach

doi: 10.1007/s13131-022-1998-0
Funds:  The Marine Scholarship of China, China Scholarship Council for International Doctoral Students under contract No. 2017SOA016552; the National Natural Science Foundation of China under contract Nos U2106204 and 41676003.
More Information
  • Corresponding author: E-mail: wsjang@ouc.edu.cn
  • Received Date: 2021-08-22
  • Accepted Date: 2021-12-27
  • Available Online: 2022-06-13
  • Publish Date: 2022-08-31
  • Variations in incoming shortwave radiation influence the net surface heat flux, contributing to the formation of a temperature inversion. The effects of shortwave radiation on the temperature inversions in the Bay of Bengal and eastern equatorial Indian Ocean have never been investigated. Thus, a high-resolution (horizontal resolution of 0.07°×0.07° with 50 vertical layers) Regional Ocean Modeling System (ROMS) model is utilized to quantify the contributions of shortwave radiation to the temperature inversions in the study domain. Analyses of the mixed layer heat and salt budgets are performed, and different model simulations are compared. The model results suggest that a 30% change in shortwave radiation can change approximately 3% of the temperature inversion area in the Bay of Bengal. Low shortwave radiation reduces the net surface heat flux and cools the mixed layer substantially; it also reduces the evaporation rate, causing less evaporative water vapor losses from the ocean than the typical situation, and ultimately enhances haline stratification. Thus, the rudimentary outcome of this research is that a decrease in shortwave radiation produces more temperature inversion in the study region, which is primarily driven by the net surface cooling and supported by the intensive haline stratification. Moreover, low shortwave radiation eventually intensifies the temperature inversion layer by thickening the barrier layer. This study could be an important reference for predicting how the Indian Ocean climate will respond to future changes in shortwave radiation.
  • loading
  • [1]
    Agarwal N, Sharma R, Basu S, et al. 2007. Bay of Bengal summer monsoon 10–20 day variability in sea surface temperature using model and observations. Geophysical Research Letters, 34(6): L06602. doi: 10.1029/2007GL029296
    [2]
    Akhil V P, Durand F, Lengaigne M, et al. 2014. A modeling study of the processes of surface salinity seasonal cycle in the Bay of Bengal. Journal of Geophysical Research: Oceans, 119(6): 3926–3947. doi: 10.1002/2013JC009632
    [3]
    Akhter S, Qiao Fangli, Wu Kejian, et al. 2021. Seasonal and long-term sea-level variations and their forcing factors in the northern Bay of Bengal: a statistical analysis of temperature, salinity, wind stress curl, and regional climate index data. Dynamics of Atmospheres and Oceans, 95: 101239. doi: 10.1016/j.dynatmoce.2021.101239
    [4]
    Babu S V, Rao A D. 2011. Mixing in the surface layers in association with internal waves during winter in the northwestern Bay of Bengal. Natural Hazards, 57(3): 551–562. doi: 10.1007/s11069-010-9607-5
    [5]
    Behara A, Vinayachandran P N. 2016. An OGCM study of the impact of rain and river water forcing on the Bay of Bengal. Journal of Geophysical Research: Oceans, 121(4): 2425–2446. doi: 10.1002/2015JC011325
    [6]
    Berrisford P, Dee D P, Fielding M, et al. 2009. The ERA-interim archive. Reading: European Centre for Medium-Range Weather Forecasts
    [7]
    Boyer T P, Antonov J I, Baranova O K, et al. 2013. World ocean database 2013. Silver Spring: NOAA
    [8]
    Carton J A, Giese B S. 2008. A reanalysis of ocean climate using simple ocean data assimilation (SODA). Monthly Weather Review, 136(8): 2999–3017. doi: 10.1175/2007MWR1978.1
    [9]
    Chaitanya A V S, Lengaigne M, Vialard J, et al. 2014. Salinity measurements collected by fishermen reveal a “river in the sea” flowing along the eastern coast of India. Bulletin of the American Meteorological Society, 95(12): 1897–1908. doi: 10.1175/BAMS-D-12-00243.1
    [10]
    Chakraborty A, Gangopadhyay A. 2016. Development of a high-resolution multiscale modeling and prediction system for Bay of Bengal, Part I: climatology-based simulations. Open Journal of Marine Science, 6(1): 145–176. doi: 10.4236/ojms.2016.61013
    [11]
    Chowdhury K M A, Jiang Wensheng, Liu Guimei, et al. 2019. Formation and types of thermal inversion in the Bay of Bengal. CLIVAR Exchanges, 76: 20–23
    [12]
    Chowdhury K M A, Jiang Wensheng, Liu Guimei, et al. 2021. Dominant physical-biogeochemical drivers for the seasonal variations in the surface chlorophyll-a and subsurface chlorophyll-a maximum in the Bay of Bengal. Regional Studies in Marine Science, 48: 102022. doi: 10.1016/j.rsma.2021.102022
    [13]
    Chowdhury K M A, Jiang Wensheng, Liu Guimei, et al. 2022. Spatiotemporal variation and mechanisms of temperature inversion in the Bay of Bengal and the eastern equatorial Indian Ocean. Acta Oceanologica Sinica, 41(4): 23–39. doi: 10.1007/s13131-021-1873-4
    [14]
    Danabasoglu G, McWilliams J C, Gent P R. 1994. The role of mesoscale tracer transports in the global ocean circulation. Science, 264(5162): 1123–1126. doi: 10.1126/science.264.5162.1123
    [15]
    de Boyer Montégut C. 2005. Couche mélangée océanique et bilan thermohalin de surface dans l’Océan Indien Nord (in French) [dissertation]. Paris: Universite Pierre et Marie Curie
    [16]
    de Boyer Montégut C, Madec G, Fischer A S, et al. 2004. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. Journal of Geophysical Research: Oceans, 109(C12): C12003. doi: 10.1029/2004jc002378
    [17]
    de Boyer Montégut C, Mignot J, Lazar A, et al. 2007. Control of salinity on the mixed layer depth in the world ocean: 1. General description. Journal of Geophysical Research: Oceans, 112(C6): C06011. doi: 10.1029/2006JC003953
    [18]
    Diansky N A, Bagno A V, Zalesny V B. 2002. Sigma model of global ocean circulation and its sensitivity to variations in wind stress. Izvestiya, Atmospheric and Oceanic Physics, 38(4): 477–494
    [19]
    Durand F, Shetye S R, Vialard J, et al. 2004. Impact of temperature inversions on SST evolution in the south-eastern Arabian Sea during the pre-summer monsoon season. Geophysical Research Letters, 31(1): L01305. doi: 10.1029/2003GL018906
    [20]
    Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2): 183–204. doi: 10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2
    [21]
    Fairall C W, Bradley E F, Hare J E, et al. 2003. Bulk parameterization of air-sea fluxes: updates and verification for the COARE algorithm. Journal of Climate, 16(4): 571–591. doi: 10.1175/1520-0442(2003)016<0571:BPOASF>2.0.CO;2
    [22]
    Fekete B M, Vörösmarty C J, Grabs W. 2000. Global composite runoff fields based on observed river discharge and simulated water balances. Koblenz, Germany: Global Runoff Data Centre
    [23]
    Foltz G R, McPhaden M J. 2009. Impact of barrier layer thickness on SST in the central tropical North Atlantic. Journal of Climate, 22(2): 285–299. doi: 10.1175/2008JCLI2308.1
    [24]
    Francis P A, Vinayachandran P N, Shenoi S S C. 2013. The Indian Ocean forecast system. Current Science, 104(10): 1354–1368
    [25]
    Girishkumar M S, Ravichandran M, McPhaden M J. 2013. Temperature inversions and their influence on the mixed layer heat budget during the winters of 2006−2007 and 2007−2008 in the Bay of Bengal. Journal of Geophysical Research: Oceans, 118(5): 2426–2437. doi: 10.1002/jgrc.20192
    [26]
    Girishkumar M S, Ravichandran M, McPhaden M J, et al. 2011. Intraseasonal variability in barrier layer thickness in the south central Bay of Bengal. Journal of Geophysical Research: Oceans, 116(C3): C03009. doi: 10.1029/2010JC006657
    [27]
    Good S A, Martin M J, Rayner N A. 2013. EN4: quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates. Journal of Geophysical Research: Oceans, 118(12): 6704–6716. doi: 10.1002/2013JC009067
    [28]
    Gouretski V, Reseghetti F. 2010. On depth and temperature biases in bathythermograph data: development of a new correction scheme based on analysis of a global ocean database. Deep-Sea Research Part I: Oceanographic Research Papers, 57(6): 812–833. doi: 10.1016/j.dsr.2010.03.011
    [29]
    Haidvogel D B, Arango H G, Hedstrom K, et al. 2000. Model evaluation experiments in the North Atlantic Basin: simulations in nonlinear terrain-following coordinates. Dynamics of Atmospheres and Oceans, 32(3–4): 239–281. doi: 10.1016/s0377-0265(00)00049-x
    [30]
    Halkides D, Lee T. 2011. Mechanisms controlling seasonal mixed layer temperature and salinity in the southwestern tropical Indian Ocean. Dynamics of Atmospheres and Oceans, 51(3): 77–93. doi: 10.1016/j.dynatmoce.2011.03.002
    [31]
    Hao Jiajia, Chen Yongli, Wang Fan. 2010. Temperature inversion in China seas. Journal of Geophysical Research: Oceans, 115(C12): C12025. doi: 10.1029/2010JC006297
    [32]
    Harenduprakash L, Mitra A K. 1988. Vertical turbulent mass flux below the sea surface and air-sea interaction—monsoon region of the Indian Ocean. Deep-Sea Research Part A. Oceanographic Research Papers, 35(3): 333–346. doi: 10.1016/0198-0149(88)90014-3
    [33]
    Haywood J M, Ramaswamy V. 1998. Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. Journal of Geophysical Research: Atmospheres, 103(D6): 6043–6058. doi: 10.1029/97JD03426
    [34]
    He Qingyou, Zhan Haigang, Cai Shuqun. 2020. Anticyclonic eddies enhance the winter barrier layer and surface cooling in the Bay of Bengal. Journal of Geophysical Research: Oceans, 125(10): e16524. doi: 10.1029/2020JC016524
    [35]
    Jana S, Gangopadhyay A, Chakraborty A. 2015. Impact of seasonal river input on the Bay of Bengal simulation. Continental Shelf Research, 104: 45–62. doi: 10.1016/j.csr.2015.05.001
    [36]
    Jana S, Gangopadhyay A, Lermusiaux P F J, et al. 2018. Sensitivity of the Bay of Bengal upper ocean to different winds and river input conditions. Journal of Marine Systems, 187: 206–222. doi: 10.1016/j.jmarsys.2018.08.001
    [37]
    Jensen M P, Petersen W A, Bansemer A, et al. 2016. The midlatitude continental convective clouds experiment (MC3E). Bulletin of the American Meteorological Society, 97(9): 1667–1686. doi: 10.1175/BAMS-D-14-00228.1
    [38]
    Jerlov N G. 1968. Optical Oceanography. Amsterdam: Elsevier, 118–124
    [39]
    Kara A B, Rochford P A, Hurlburt H E. 2000. Mixed layer depth variability and barrier layer formation over the North Pacific Ocean. Journal of Geophysical Research: Oceans, 105(C7): 16783–16801. doi: 10.1029/2000JC900071
    [40]
    Kashem M, Ahmed M K, Qiao Fangli, et al. 2019. The response of the upper ocean to tropical cyclone Viyaru over the Bay of Bengal. Acta Oceanologica Sinica, 38(1): 61–70. doi: 10.1007/s13131-019-1370-1
    [41]
    Kaufman Y J, Koren I, Remer L A, et al. 2005. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proceedings of the National Academy of Sciences of the United States of America, 102(32): 11207–11212. doi: 10.1073/pnas.0505191102
    [42]
    Kim D, Ramanathan V. 2008. Solar radiation budget and radiative forcing due to aerosols and clouds. Journal of Geophysical Research: Atmospheres, 113(D2): D02203. doi: 10.1029/2007JD008434
    [43]
    Kim D H, Sohn B J, Nakajima T, et al. 2005. Aerosol radiative forcing over East Asia determined from ground-based solar radiation measurements. Journal of Geophysical Research: Atmospheres, 110(D10): D10S22. doi: 10.1029/2004JD004678
    [44]
    Köberle C, Philander S G H. 1994. On the processes that control seasonal variations of sea surface temperatures in the tropical Pacific Ocean. Tellus A: Dynamic Meteorology and Oceanography, 46(4): 481–496. doi: 10.3402/tellusa.v46i4.15494
    [45]
    Kumari A, Kumar S P, Chakraborty A. 2018. Seasonal and interannual variability in the barrier layer of the Bay of Bengal. Journal of Geophysical Research: Oceans, 123(2): 1001–1015. doi: 10.1002/2017JC013213
    [46]
    Kurian J, Vinayachandran P N. 2006. Formation mechanisms of temperature inversions in the southeastern Arabian Sea. Geophysical Research Letters, 33(17): L17611. doi: 10.1029/2006GL027280
    [47]
    Levitus S, Antonov J I, Boyer T P, et al. 2009. Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophysical Research Letters, 36(7): L07608. doi: 10.1029/2008GL037155
    [48]
    Li Kuiping, Wang Haiyuan, Yang Yang, et al. 2016. Observed characteristics and mechanisms of temperature inversion in the northern Bay of Bengal. Haiyang Xuebao (in chinese), 38(7): 22–31
    [49]
    Li Jian, Yang Lei, Shu Yeqiang, et al. 2012. Temperature inversion in the Bay of Bengal prior to the summer monsoon onsets in 2010 and 2011. Atmospheric and Oceanic Science Letters, 5(4): 290–294. doi: 10.1080/16742834.2012.11447004
    [50]
    Liao H, Seinfeld J H. 1998. Radiative forcing by mineral dust aerosols: sensitivity to key variables. Journal of Geophysical Research: Atmospheres, 103(D24): 31637–31645. doi: 10.1029/1998JD200036
    [51]
    Lukas R, Lindstrom E. 1991. The mixed layer of the western equatorial Pacific Ocean. Journal of Geophysical Research: Oceans, 96(S01): 3343–3357. doi: 10.1029/90JC01951
    [52]
    Masson S, Delecluse P, Boulanger J P, et al. 2002. A model study of the seasonal variability and formation mechanisms of the barrier layer in the eastern equatorial Indian Ocean. Journal of Geophysical Research: Oceans, 107(C12): 8017. doi: 10.1029/2001JC000832
    [53]
    Masud-Ul-Alam M, Khan M A I, Sunny S K, et al. 2020. An exclusive in-situ dataset on physicochemical parameters in the Gappy northern Bay of Bengal. Data in Brief, 31: 106024. doi: 10.1016/j.dib.2020.106024
    [54]
    Mellor G L, Yamada T. 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics, 20(4): 851–875. doi: 10.1029/RG020i004p00851
    [55]
    Mignot J, de Boyer Montégut C, Lazar A, et al. 2007. Control of salinity on the mixed layer depth in the world ocean: 2. Tropical areas. Journal of Geophysical Research: Oceans, 112(C10): C10010. doi: 10.1029/2006JC003954
    [56]
    Monterey G I, Levitus S. 1997. Seasonal variability of mixed layer depth for the world ocean. Silver Spring: NOAA
    [57]
    Morel A, Antoine D. 1994. Heating rate within the upper ocean in relation to its bio-optical state. Journal of Physical Oceanography, 24(7): 1652–1665. doi: 10.1175/1520-0485(1994)024<1652:HRWTUO>2.0.CO;2
    [58]
    Murty V S N, Sarma Y V B, Babu M T, et al. 1992. Hydrography and circulation in the northwestern Bay of Bengal during the retreat of southwest monsoon. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 101: 67–75. doi: 10.1007/BF02839173
    [59]
    Myhre G, Myhre A. 2003. Uncertainties in radiative forcing due to surface albedo changes caused by land-use changes. Journal of Climate, 16(10): 1511–1524. doi: 10.1175/1520-0442(2003)016<1511:UIRFDT>2.0.CO;2
    [60]
    Nagura M, Terao T, Hashizume M. 2015. The role of temperature inversions in the generation of seasonal and interannual SST variability in the far northern Bay of Bengal. Journal of Climate, 28(9): 3671–3693. doi: 10.1175/JCLI-D-14-00553.1
    [61]
    Narvekar J, Kumar S P. 2014. Mixed layer variability and chlorophyll a biomass in the Bay of Bengal. Biogeosciences, 11(14): 3819–3843. doi: 10.5194/bg-11-3819-2014
    [62]
    Nyadjro E S, Subrahmanyam B, Shriver J F. 2011. Seasonal variability of salt transport during the Indian Ocean monsoons. Journal of Geophysical Research: Oceans, 116(C8): C08036. doi: 10.1029/2011JC006993
    [63]
    Pant V, Girishkumar M S, Bhaskar T V S U, et al. 2015. Observed interannual variability of near-surface salinity in the Bay of Bengal. Journal of Geophysical Research: Oceans, 120(5): 3315–3329. doi: 10.1002/2014JC010340
    [64]
    Parampil S R, Gera A, Ravichandran M, et al. 2010. Intraseasonal response of mixed layer temperature and salinity in the Bay of Bengal to heat and freshwater flux. Journal of Geophysical Research: Oceans, 115(C5): C05002. doi: 10.1029/2009JC005790
    [65]
    Ramanathan V, Crutzen P J, Kiehl J T, et al. 2001a. Aerosols, climate, and the hydrological cycle. Science, 294(5549): 2119–2124. doi: 10.1126/science.1064034
    [66]
    Ramanathan V, Crutzen P J, Lelieveld J, et al. 2001b. Indian Ocean experiment: an integrated analysis of the climate forcing and effects of the great Indo-Asian haze. Journal of Geophysical Research: Atmospheres, 106(D22): 28371–28398. doi: 10.1029/2001JD900133
    [67]
    Ramanathan V, Ramana M V. 2005. Persistent, widespread, and strongly absorbing haze over the Himalayan foothills and the Indo-Gangetic plains. Pure and Applied Geophysics, 162(8): 1609–1626
    [68]
    Rao B P, Babu V R, Chandramohan P. 1987. Seasonal and diurnal variability of thermal structure in the coastal waters off Visakhapatnam. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences, 96(1): 69–79. doi: 10.1007/BF02842639
    [69]
    Rao R R, Rao D S, Murthy P G K, et al. 1983. A preliminary investigation of the summer monsoonal forcing on the thermal structure of upper Bay of Bengal during Monex-79. Mausum, 32: 85–92
    [70]
    Rao D P, Sastry J S. 1981. Circulation and distribution of some hydrographical properties during the late winter in the Bay of Bengal. Mahasagar, 14(1): 1–15
    [71]
    Rao R R, Sivakumar R. 2000. Seasonal variability of near-surface thermal structure and heat budget of the mixed layer of the tropical Indian Ocean from a new global ocean temperature climatology. Journal of Geophysical Research: Oceans, 105(C1): 995–1015. doi: 10.1029/1999JC900220
    [72]
    Rao R R, Sivakumar R. 2003. Seasonal variability of sea surface salinity and salt budget of the mixed layer of the north Indian Ocean. Journal of Geophysical Research: Oceans, 108(C1): 3009. doi: 10.1029/2001JC000907
    [73]
    Roseli N H, Akhir M F, Husain M L, et al. 2015. Water mass characteristics and stratification at the shallow Sunda shelf of southern South China Sea. Open Journal of Marine Science, 5(4): 455–467. doi: 10.4236/ojms.2015.54036
    [74]
    Sengupta D, Raj G N B, Shenoi S S C. 2006. Surface freshwater from Bay of Bengal runoff and Indonesian throughflow in the tropical Indian Ocean. Geophysical Research Letters, 33(22): L22609. doi: 10.1029/2006GL027573
    [75]
    Sengupta D, Ravichandran M. 2001. Oscillations of Bay of Bengal sea surface temperature during the 1998 summer monsoon. Geophysical Research Letters, 28(10): 2033–2036. doi: 10.1029/2000GL012548
    [76]
    Shankar D, McCreary J P, Han W, et al. 1996. Dynamics of the East India coastal current: 1. Analytic solutions forced by interior Ekman pumping and local alongshore winds. Journal of Geophysical Research: Oceans, 101(C6): 13975–13991. doi: 10.1029/96JC00559
    [77]
    Sharma R, Agarwal N, Momin I M, et al. 2010. Simulated sea surface salinity variability in the tropical Indian Ocean. Journal of Climate, 23(24): 6542–6554. doi: 10.1175/2010JCLI3721.1
    [78]
    Shchepetkin A F, McWilliams J C. 2003. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. Journal of Geophysical Research: Oceans, 108(C3): 3090. doi: 10.1029/2001JC001047
    [79]
    Shee A, Sil S, Gangopadhyay A, et al. 2019. Seasonal evolution of oceanic upper layer processes in the northern Bay of Bengal following a single Argo float. Geophysical Research Letters, 46(10): 5369–5377. doi: 10.1029/2019GL082078
    [80]
    Shenoi S S C, Shankar D, Shetye S R. 2002. Differences in heat budgets of the near-surface Arabian Sea and Bay of Bengal: implications for the summer monsoon. Journal of Geophysical Research: Oceans, 107(C6): 3052. doi: 10.1029/2000JC000679
    [81]
    Shetye S R, Gouveia A D, Shankar D, et al. 1996. Hydrography and circulation in the western Bay of Bengal during the northeast monsoon. Journal of Geophysical Research: Ocean, 101(C6): 14011–14025. doi: 10.1029/95JC03307
    [82]
    Song Yuhe, Haidvogel D. 1994. A semi-implicit ocean circulation model using a generalized topography-following coordinate system. Journal of Computational Physics, 115(1): 228–244. doi: 10.1006/jcph.1994.1189
    [83]
    Suryanarayana A, Murty V S N, Rao D P. 1993. Hydrography and circulation of the Bay of Bengal during early winter, 1983. Deep-Sea Research Part I: Oceanographic Research Papers, 40(1): 205–217. doi: 10.1016/0967-0637(93)90061-7
    [84]
    Sweeney C, Gnanadesikan A, Griffies S M, et al. 2005. Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. Journal of Physical Oceanography, 35(6): 1103–1119. doi: 10.1175/JPO2740.1
    [85]
    Thadathil P, Gopalakrishna V V, Muraleedharan P M, et al. 2002. Surface layer temperature inversion in the Bay of Bengal. Deep-Sea Research Part I: Oceanographic Research Paper, 49(10): 1801–1818. doi: 10.1016/S0967-0637(02)00044-4
    [86]
    Thadathil P, Muraleedharan P M, Rao R R, et al. 2007. Observed seasonal variability of barrier layer in the Bay of Bengal. Journal of Geophysical Research: Oceans, 112(C2): C02009. doi: 10.1029/2006JC003651
    [87]
    Thadathil P, Suresh I, Gautham S, et al. 2016. Surface layer temperature inversion in the Bay of Bengal: main characteristics and related mechanisms. Journal of Geophysical Research: Oceans, 121(8): 5682–5696. doi: 10.1002/2016JC011674
    [88]
    Thandlam V, Rahaman H. 2019. Evaluation of surface shortwave and longwave downwelling radiations over the global tropical oceans. SN Applied Sciences, 1(10): 1171. doi: 10.1007/s42452-019-1172-2
    [89]
    Thangaprakash V P, Girishkumar M S, Suprit K, et al. 2016. What controls seasonal evolution of sea surface temperature in the Bay of Bengal? Mixed layer heat budget analysis using moored buoy observations along 90°E. Oceanography, 29(2): 202–213. doi: 10.5670/oceanog.2016.52
    [90]
    Thompson B, Gnanaseelan C, Salvekar P S. 2006. Seasonal evolution of temperature inversions in the north Indian Ocean. Current Science, 90(5): 697–704
    [91]
    Vialard J, Delecluse P. 1998. An OGCM study for the TOGA decade. Part II: barrier-layer formation and variability. Journal of Physical Oceanography, 28(6): 1089–1106. doi: 10.1175/1520-0485(1998)028<1089:AOSFTT>2.0.CO;2
    [92]
    Vialard J, Foltz G R, McPhaden M J, et al. 2008. Strong Indian Ocean sea surface temperature signals associated with the Madden-Julian oscillation in late 2007 and early 2008. Geophysical Research Letters, 35(19): L19608. doi: 10.1029/2008GL035238
    [93]
    Vinayachandran P N. 2005. Bifurcation of the east India coastal current east of Sri Lanka. Geophysical Research Letters, 32(15): L15606. doi: 10.1029/2005GL022864
    [94]
    Vinayachandran P N, Murty V S N, Babu V R. 2002. Observations of barrier layer formation in the Bay of Bengal during summer monsoon. Journal of Geophysical Research: Oceans, 107(C12): 8018. doi: 10.1029/2001JC000831
    [95]
    Vinayachandran P N, Shankar D, Vernekar S, et al. 2013. A summer monsoon pump to keep the Bay of Bengal salty. Geophysical Research Letters, 40(9): 1777–1782. doi: 10.1002/grl.50274
    [96]
    Vinayachandran P N, Yamagata T. 1998. Monsoon response of the sea around Sri Lanka: generation of thermal domes and anticyclonic vortices. Journal of Physical Oceanography, 28(10): 1946–1960. doi: 10.1175/1520-0485(1998)028<1946:MROTSA>2.0.CO;2
    [97]
    Vorosmarty C J, Fekete B M, Tucker B A. 1998. Global river discharge, 1807−1991, V. 1.1 (RivDIS). Oak Ridge: ORNL DAAC,
    [98]
    Weller R, Farrar J T, Buckley J, et al. 2016. Air-sea interaction in the Bay of Bengal. Oceanography, 29(2): 28–37. doi: 10.5670/oceanog.2016.36
    [99]
    Wyrtki K, Bennett E B, Rochford D J, et al. 1971. Oceanographic Atlas of the International Indian Ocean Expedition. Washington: National Science Foundation
    [100]
    Yu Lisan. 2003. Variability of the depth of the 20°C isotherm along 6°N in the Bay of Bengal: its response to remote and local forcing and its relation to satellite SSH variability. Deep-Sea Research Part II: Topical Studies in Oceanography, 50(12–13): 2285–2304. doi: 10.1016/S0967-0645(03)00057-2
    [101]
    Yu H, Kaufman Y J, Chin M, et al. 2006. A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmospheric Chemistry and Physics, 6(3): 613–666. doi: 10.5194/acp-6-613-2006
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(1)

    Article Metrics

    Article views (787) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return