Turn off MathJax
Article Contents
Chongxuan Xu, Ying Chen, Xueliang Zhao, Wenyang Song, Xiao Li. Prediction of seawater pH by bidirectional gated recurrent neural network with attention under phase space reconstruction: case study of the coastal waters of Beihai[J]. Acta Oceanologica Sinica.
Citation: Chongxuan Xu, Ying Chen, Xueliang Zhao, Wenyang Song, Xiao Li. Prediction of seawater pH by bidirectional gated recurrent neural network with attention under phase space reconstruction: case study of the coastal waters of Beihai[J]. Acta Oceanologica Sinica.

Prediction of seawater pH by bidirectional gated recurrent neural network with attention under phase space reconstruction: case study of the coastal waters of Beihai

Funds:  The National Natural Science Foundation of China under contract No. 62275228, the Key Research and Development Project of Hebei Province under contract Nos. 19273901D and 20373301D, the Natural Science Foundation of Hebei Province, China under contract No. F2020203066.
More Information
  • Marine life is very sensitive to changes in pH. Even slight changes can cause ecosystems to collapse. Therefore, understanding the future pH of seawater is of great significance for the protection of the marine environment. At present, the monitoring method of seawater pH has been matured. However, how to accurately predict future changes has been lacking effective solutions. Based on this, the model of bidirectional gated recurrent neural network with multi-headed self-attention based on improved complete ensemble empirical mode decomposition with adaptive noise combined with phase space reconstruction (ICPBGA) is proposed to achieve seawater pH prediction. To verify the validity of this model, pH data of two monitoring sites in the Beihai coastal sea area are selected to verify the effect. At the same time, the ICPBGA model is compared with other excellent models for predicting chaotic time series, and root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and coefficient of determination (R2) are used as performance evaluation indicators. The R2 of the ICPBGA model at site 1 and site 2 are above 0.9, and the prediction errors are also the smallest. The results show that the ICPBGA model has a wide range of applicability and the most satisfactory prediction effect. The prediction method in this paper can be further expanded and used to predict other marine environmental indicators.
  • loading
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (39) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return