Volume 40 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
Fangjie Yu, Zeyuan Wang, Shuai Liu, Ge Chen. Inversion of the three-dimensional temperature structure of mesoscale eddies in the Northwest Pacific based on deep learning[J]. Acta Oceanologica Sinica, 2021, 40(10): 176-186. doi: 10.1007/s13131-021-1841-z
Citation: Fangjie Yu, Zeyuan Wang, Shuai Liu, Ge Chen. Inversion of the three-dimensional temperature structure of mesoscale eddies in the Northwest Pacific based on deep learning[J]. Acta Oceanologica Sinica, 2021, 40(10): 176-186. doi: 10.1007/s13131-021-1841-z

Inversion of the three-dimensional temperature structure of mesoscale eddies in the Northwest Pacific based on deep learning

doi: 10.1007/s13131-021-1841-z
Funds:  The National Key Research and Development Program of China under contract Nos 2016YFC1402608, 2016YFC1400904, 2016YFC1400900 and 2019YFD0901000.
More Information
  • Corresponding author: E-mail: gechen@ouc.edu.cn
  • Received Date: 2020-08-31
  • Accepted Date: 2021-04-02
  • Available Online: 2021-09-10
  • Publish Date: 2021-10-30
  • Mesoscale eddies, which are mainly caused by baroclinic effects in the ocean, are common oceanic phenomena in the Northwest Pacific Ocean and play very important roles in ocean circulation, ocean dynamics and material energy transport. The temperature structure of mesoscale eddies will lead to variations in oceanic baroclinity, which can be reflected in the sea level anomaly (SLA). Deep learning can automatically extract different features of data at multiple levels without human intervention, and find the hidden relations of data. Therefore, combining satellite SLA data with deep learning is a good way to invert the temperature structure inside eddies. This paper proposes a deep learning algorithm, eddy convolution neural network (ECN), which can train the relationship between mesoscale eddy temperature anomalies and sea level anomalies (SLAs), relying on the powerful feature extraction and learning abilities of convolutional neural networks. After obtaining the temperature structure model through ECN, according to climatic temperature data, the temperature structure of mesoscale eddies in the Northwest Pacific is retrieved with a spatial resolution of 0.25° at depths of 0–1 000 m. The overall accuracy of the ECN temperature structure is verified using Argo profiles at the locations of cyclonic and anticyclonic eddies during 2015–2016. Taking 10% error as the acceptable threshold of accuracy, 89.64% and 87.25% of the cyclonic and anticyclonic eddy temperature structures obtained by ECN met the threshold, respectively.
  • loading
  • [1]
    Ali M M, Jagadeesh P S V, Lin I I, et al. 2012. A neural network approach to estimate tropical cyclone heat potential in the Indian Ocean. IEEE Geoscience and Remote Sensing Letters, 9(6): 1114–1117. doi: 10.1109/LGRS.2012.2190491
    [2]
    Ali M M, Swain D, Weller R A. 2004. Estimation of ocean subsurface thermal structure from surface parameters: a neural network approach. Geophysical Research Letters, 31(20): L20308. doi: 10.1029/2004GL021192
    [3]
    Alvera-Azcárate A, Barth A, Rixen M, et al. 2005. Reconstruction of incomplete oceanographic data sets using empirical orthogonal functions: application to the Adriatic Sea surface temperature. Ocean Modelling, 9(4): 325–346. doi: 10.1016/j.ocemod.2004.08.001
    [4]
    Barcelo-Llull B, Pascual A, Mason E, et al. 2018. Comparing a multivariate global ocean state estimate with high-resolution in situ data: an anticyclonic intrathermocline eddy near the canary islands. Frontiers in Marine Science, 5: 66. doi: 10.3389/fmars.2018.00066
    [5]
    Barth A, Alvera-Azcárate A, Licer M, et al. 2020. DINCAE 1.0: a convolutional neural network with error estimates to reconstruct sea surface temperature satellite observations. Geoscientific Model Development, 13(3): 1609–1622. doi: 10.5194/gmd-13-1609-2020
    [6]
    Corchado J M, Aiken J. 2002. Hybrid artificial intelligence methods in oceanographic forecast models. IEEE Transactions on Systems, 32(4): 307–313
    [7]
    de Boyer Montégut C, Madec G, Fischer A S, et al. 2004. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. Journal of Geophysical Research: Oceans, 109(C12): C12003. doi: 10.1029/2004JC002378
    [8]
    Ducournau A, Fablet R. 2016. Deep learning for ocean remote sensing: an application of convolutional neural networks for super-resolution on satellite-derived SST data. In: Proceedings of the 9th IAPR Workshop on Pattern Recogniton in Remote Sensing. Cancun, Mexico: IEEE
    [9]
    Fox D N, Teague W J, Barron C N, et al. 2002. The Modular Ocean Data Assimilation System (MODAS). Journal of Atmospheric and Oceanic Technology, 19(2): 240–252. doi: 10.1175/1520-0426(2002)019<0240:TMODAS>2.0.CO;2
    [10]
    Ge Xuyang, Wang Wanqiu, Kumar A, et al. 2017. Importance of the vertical resolution in simulating SST diurnal and intraseasonal variability in an oceanic general circulation model. Journal of Climate, 30(11): 3963–3978. doi: 10.1175/JCLI-D-16-0689.1
    [11]
    Goni G, Kamholz S, Garzoli S, et al. 1996. Dynamics of the Brazil-Malvinas Confluence based on inverted echo sounders and altimetry. Journal of Geophysical Research: Oceans, 101(C7): 16273–16289. doi: 10.1029/96JC01146
    [12]
    Guinehut S, Dhomps A L, Larnicol G, et al. 2012. High resolution 3-D temperature and salinity fields derived from in situ and satellite observations. Ocean Science, 8(5): 845–857. doi: 10.5194/os-8-845-2012
    [13]
    Han Mingxu, Feng Yuan, Zhao Xueli, et al. 2019. A convolutional neural network using surface data to predict subsurface temperatures in the Pacific Ocean. IEEE Access, 7: 172816–172829. doi: 10.1109/ACCESS.2019.2955957
    [14]
    Hinton G E, Salakhutdinov R R. 2006. Reducing the dimensionality of data with neural networks. Science, 313(5786): 504–507. doi: 10.1126/science.1127647
    [15]
    LeCun Y, Bengio Y, Hinton G. 2015. Deep learning. Nature, 521(7553): 436–444. doi: 10.1038/nature14539
    [16]
    Lima E, Sun Xin, Dong Junyu, et al. 2017. Learning and transferring convolutional neural network knowledge to ocean front recognition. IEEE Geoscience and Remote Sensing Letters, 14(3): 354–358. doi: 10.1109/LGRS.2016.2643000
    [17]
    Liu Qinyan, Zhou Wen. 2010. Relationship between typhoon activity in the northwestern Pacific and the up-per-ocean heat content on interdecadal time scale. Journal of Tropical Oceanography, 29(6): 8–14
    [18]
    Long J, Shelhamer E, Darrell T. 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, MA, USA: IEEE, 640–651
    [19]
    Lu Wenfang, Su Hua, Yang Xin, et al. 2019. Subsurface temperature estimation from remote sensing data using a clustering-neural network method. Remote Sensing of Environment, 229: 213–222. doi: 10.1016/j.rse.2019.04.009
    [20]
    Mandal S, Rao S, Raju D H. 2005. Ocean wave parameters estimation using backpropagation neural networks. Marine Structures, 18(3): 301–318. doi: 10.1016/j.marstruc.2005.09.002
    [21]
    Pun I F, Lin I I, Ko D S. 2014. New generation of satellite-derived ocean thermal structure for the western North Pacific typhoon intensity forecasting. Progress in Oceanography, 121: 109–124. doi: 10.1016/j.pocean.2013.10.004
    [22]
    Pun I F, Lin I I, Wu C R, et al. 2007. Validation and application of altimetry-derived upper ocean thermal structure in the western North Pacific Ocean for typhoon-intensity forecast. IEEE Transactions on Geoscience and Remote Sensing, 45(6): 1616–1630. doi: 10.1109/TGRS.2007.895950
    [23]
    Pun I F, Price J F, Jayne S R. 2016. Satellite-derived ocean thermal structure for the North Atlantic Hurricane Season. Monthly Weather Review, 144(3): 877–896. doi: 10.1175/MWR-D-15-0275.1
    [24]
    Rao A D, Joshi M, Jain I, et al. 2010. Response of subsurface waters in the eastern Arabian Sea to tropical cyclones. Estuarine, 89(4): 267–276
    [25]
    Shang Xiaodong, Xu Chi, Chen Guiying, et al. 2013. Review on mechanical energy of ocean mesoscale eddies and associated energy sources and sinks. Journal of Tropical Oceanography, 32(2): 24–36
    [26]
    Shay L K, Goni G J, Black P G. 2000. Effects of a warm oceanic feature on Hurricane Opal. Monthly Weather Review, 128(5): 1366–1383. doi: 10.1175/1520-0493(2000)128<1366:EOAWOF>2.0.CO;2
    [27]
    Shroyer E L, Rudnick D L, Farrar J T, et al. 2016. Modification of upper-ocean temperature structure by subsurface mixing in the presence of strong salinity stratification. Oceanography, 29(2): 62–71. doi: 10.5670/oceanog.2016.39
    [28]
    Song Tao, Jiang Jingyu, Li Wei, et al. 2020. A deep learning method with merged LSTM neural networks for SSHA prediction. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13: 2853–2860. doi: 10.1109/JSTARS.2020.2998461
    [29]
    Su Hua, Li Wene, Yan Xiaohai. 2018. Retrieving temperature anomaly in the global subsurface and deeper ocean from satellite observations. Journal of Geophysical Research: Oceans, 123(1): 399–410. doi: 10.1002/2017JC013631
    [30]
    Su Hua, Yang Xin, Lu Wenfang, et al. 2019. Estimating subsurface thermohaline structure of the global ocean using surface remote sensing observations. Remote Sensing, 11(13): 1598. doi: 10.3390/rs11131598
    [31]
    Wu C C, Tu W T, Pun I F, et al. 2016. Tropical cyclone-ocean interaction in Typhoon Megi (2010)- A synergy study based on ITOP observations and atmosphere-ocean coupled model simulations. Journal of Geophysical Research: Atmospheres, 121(1): 153–167. doi: 10.1002/2015JD024198
    [32]
    Yang Yuting, Dong Junyu, Sun Xin, et al. 2016. Ocean front detection from instant remote sensing SST images. IEEE Geoscience and Remote Sensing Letters, 13(12): 1960–1964. doi: 10.1109/LGRS.2016.2618941
    [33]
    Yang Yuting, Dong Junyu, Sun Xin, et al. 2018. A CFCC-LSTM model for sea surface temperature prediction. IEEE Geoscience and Remote Sensing Letters, 15(2): 207–211. doi: 10.1109/LGRS.2017.2780843
    [34]
    Zhang Kun, Geng Xupu, Yan Xiaohai. 2020. Prediction of 3-D ocean temperature by multilayer convolutional LSTM. IEEE Geoscience and Remote Sensing Letters, 17(8): 1303–1307. doi: 10.1109/LGRS.2019.2947170
    [35]
    Zhao Ning, Han Zhen. 2015. A simulation model of seawater vertical temperature by using back-propagation neural network. Polish Maritime Research, 22(S1): 82–88. doi: 10.1515/pomr-2015-0037
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(2)

    Article Metrics

    Article views (413) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return