Supplementary material for 'Temporal variations of food web in a marine bay ecosystem based on LIM-MCMC model'

Authors and addresses: Pengcheng Li^{1, 2}, Hu Zhang³, Chongliang Zhang^{1, 2}, Binduo Xu^{1, 2}, Yupeng Ji^{1, 2}, Yiping Ren^{1, 2}, Ying Xue^{1, 2*}

¹ Laboratory of Fisheries Ecosystem Monitoring and Assessment, College of Fisheries, Ocean University of China, Qingdao 266003, China

² Field Observation and Research Station of Haizhou Bay Fishery Ecosystem, Ministry of Education, Qingdao 266003, China

³ Jiangsu Marine Fisheries Research Institute, Nantong 226007, China

*xueying@ouc.edu.cn

Key words: LIM-MCMC, ecological network analysis, marine ecosystem, food web

1. MATERIALS & METHODS

1.1. Parameters and sources

The parameters and sources of species or taxa used to construct the LIM-MCMC model in this study are presented in Table S1.

Code	Parameters				Sources
	P/B	Q/B	U/B	R/B	Sources
G1	8.00	28.00	0.10-0.50	0.55-0.75	Lin et al., 2018; Ren et al., 2020
G2	1.29-1.57	4.95-7.50	0.10-0.50	0.52-0.55	Li et al., 2010; Lin et al., 2018; Xu et al., 2019
G3	2.14-2.70	6.43-13.25	0.10-0.50	0.52-0.55	Wang et al., 2018; Xu et al., 2019
G4	1.60-2.37	5.98-9.80	0.10-0.50	0.55-0.75	Lin et al., 2018; Ren et al., 2020
G5	2.90	9.00	0.10-0.50	0.52-0.55	Ren et al., 2020
G6	4.60	7.60	0.10-0.50	0.52-0.55	Ren et al., 2020
G7	1.57-2.90	4.95-5.60	0.10-0.50	0.52-0.55	Li et al., 2010; Lin et al., 2018; Xu et al., 2019

Table S1 Parameters and sources of LIM-MCMC model construction in Haizhou Bay.

G8	5.65	26.90	0.10-0.50	0.52-0.55	Ren et al., 2020
G9	1.60-2.55	7.64-26.50	0.10-0.50	0.52-0.55	Li et al., 2010; Lin et al., 2018; Wang et al., 2018
G10	3.00	15.00	0.10-0.50	0.55-0.75	Feng et al., 2010
G11	1.57-1.63	4.95-9.90	0.10-0.50	0.52-0.55	Li et al., 2010; Lin et al., 2018
G12	0.99	4.93	0.10-0.50	0.52-0.55	Ren et al., 2020
G13	2.00-3.30	7.00-8.00	0.10-0.50	0.52-0.55	Lin et al., 2018; Ren et al., 2020
G14	2.79	6.97	0.10-0.50	0.52-0.55	Ren et al., 2020
G15	1.60-2.74	9.80-26.50	0.10-0.50	0.52-0.55	Li et al., 2010; Lin et al., 2018; Wang et al., 2018
G16	23.00-35.00	122.00-180.00	0.10-0.50	0.70-0.93	Lin et al., 2018; Wang et al., 2018; Liu et al.,
					2019; Xu et al., 2019; Ren et al., 2020
G17	70.00-200.00	/	0.05-0.50	0.05-0.30	Lin et al., 2018; Wang et al., 2018; Liu et al.,
					2019; Xu et al., 2019; Ren et al., 2020
G18	5.00-6.00	20.00-27.00	0.10-0.50	0.55-0.75	Lin et al., 2018; Ren et al.,2020
G19	2.37	5.98	0.10-0.50	0.55-0.75	Ren et al., 2020
G20	8.00	28.00	0.10-0.50	0.55-0.75	Lin et al., 2018; Ren et al., 2020
G21	2.20	18.01	0.10-0.50	0.52-0.55	Wang et al., 2018
G22	0.95	4.93	0.10-0.50	0.52-0.55	Lin et al., 2018
G23	3.00	15.00	0.10-0.50	0.55-0.75	Feng et al., 2010
G24	1.57	4.95	0.10-0.50	0.52-0.55	Lin et al., 2018
G25	1.60-2.74	5.50-12.89	0.10-0.50	0.52-0.55	Lin et al., 2009, 2018; Wang et al., 2018
G26	1.20	3.58	0.10-0.50	0.55-0.75	Ren et al., 2020
G27	8.00	28.00	0.10-0.50	0.52-0.55	Lin et al., 2018; Ren et al., 2020
G28	1.60-2.74	9.80-12.89	0.10-0.50	0.52-0.55	Lin et al., 2018; Wang et al., 2018
G29	0.74-0.95	4.93-16.1	0.10-0.50	0.52-0.55	Li et al., 2010; Lin et al., 2018
G30	2.00-3.30	7.00-8.00	0.10-0.50	0.52-0.55	Lin et al., 2018; Ren et al., 2020
G31	2.20	18.01	0.10-0.50	0.52-0.55	Wang et al., 2018
G32	0.96	4.93	0.10-0.50	0.52-0.55	Ren et al., 2020
G33	1.34	7.43	0.10-0.50	0.52-0.55	Ren et al., 2020
G34	2.15-2.20	18.01-25.28	0.10-0.50	0.52-0.55	Li et al., 2010; Wang et al., 2018
G35	1.59	4.70	0.10-0.50	0.52-0.55	Lin et al., 2018
G36	8.00	28.00	0.10-0.50	0.52-0.55	Lin et al., 2018; Ren et al., 2020
G37	0.63-1.59	4.70-6.09	0.10-0.50	0.52-0.55	Lin et al., 2018; Ren et al., 2020
G38	4.60	6.06	0.10-0.50	0.52-0.55	Ren et al., 2020
G39	2.20	18.01	0.10-0.50	0.52-0.55	Wang et al., 2018

G40	1.57	4.70	0.10-0.50	0.52-0.55	Lin et al., 2018
G41	0.63-1.57	4.95-6.09	0.10-0.50	0.52-0.55	Lin et al., 2018; Ren et al., 2020
G42	1.59	4.70	0.10-0.50	0.52-0.55	Lin et al., 2018
G43	1.59-2.40	4.70-7.35	0.10-0.50	0.52-0.55	Lin et al., 2018; Xu et al., 2019
G44	8.00	28.00	0.10-0.50	0.55-0.75	Lin et al., 2018; Ren et al., 2020
G45	3.00	9.75	0.10-0.50	0.52-0.55	Ren et al., 2020
G46	1.60-2.37	5.98-9.80	0.10-0.50	0.52-0.55	Lin et al., 2018; Ren et al., 2020
G47	8.00	28.00	0.10-0.50	0.55-0.75	Lin et al., 2018; Ren et al., 2020
G48	4.60	7.60	0.10-0.50	0.52-0.55	Ren et al., 2020
G49	3.50-4.60	11.00-14.00	0.10-0.50	0.55-0.75	Lin et al., 2018; Liu et al., 2019; Ren et al., 2020
G50	1.20-2.60	7.50-7.80	0.10-0.50	0.52-0.55	Li et al., 2010; Xu et al., 2019
G51	3.50	11.00-12.00	0.10-0.50	0.52-0.55	Lin et al., 2018; Ren et al., 2020
G52	3.00-3.30	8.00-9.75	0.10-0.50	0.52-0.55	Lin et al., 2018; Ren et al., 2020
G53	3.00-5.00	9.75-20.00	0.10-0.50	0.55-0.75	Lin et al., 2018; Ren et al., 2020
G54	3.00-3.30	8.00-9.75	0.10-0.50	0.52-0.55	Lin et al., 2018; Ren et al., 2020
G55	0.96	4.93	0.10-0.50	0.52-0.55	Ren et al., 2020
G56	2.74-3.00	9.70-12.89	0.10-0.50	0.52-0.55	Lin et al., 2009; Wang et al., 2018
G57	1.57	4.95	0.10-0.50	0.52-0.55	Lin et al., 2018
G58	2.05	17.14	0.10-0.50	0.52-0.55	Wang et al., 2018
G59	8.00	28.00	0.10-0.50	0.55-0.75	Wang et al., 2018
G60	3.45	8.60	0.10-0.50	0.52-0.55	Xu et al., 2019
G61	8.00	28.00	0.10-0.50	0.55-0.75	Lin et al., 2018; Ren et al., 2020
G62	0.95	4.93	0.10-0.50	0.52-0.55	Lin et al., 2018
G63	1.57	4.95	0.10-0.50	0.52-0.55	Lin et al., 2018
G64	1.66	5.90	0.10-0.50	0.52-0.55	Ren et al., 2020
G65	1.48	4.23	0.10-0.50	0.52-0.55	Ren et al., 2020
G66	3.50	11.00	0.10-0.50	0.55-0.75	Ren et al., 2020
G67	0.95	3.20	0.10-0.50	0.50-0.52	Liu et al., 2019
G68	0.97	4.00	0.10-0.50	0.52-0.55	Liu et al., 2019
G69	8.00	28.00	0.10-0.50	0.55-0.75	Ren et al., 2020
G70	1.57-2.20	4.95-18.01	0.10-0.50	0.52-0.55	Lin et al., 2018; Wang et al., 2018
G71	1.71	10.86	0.10-0.50	0.52-0.55	Wang et al., 2018
G72	0.96	4.93	0.10-0.50	0.52-0.55	Ren et al., 2020
G73	8.00	28.00	0.10-0.50	0.55-0.75	Lin et al., 2018; Ren et al., 2020

G74	2.00-3.30	7.00-8.00	0.10-0.50	0.52-0.55	Lin et al., 2018; Ren et al., 2020
G75	1.06-1.62	3.30-4.39	0.10-0.50	0.50-0.52	Li et al., 2010; Wang et al., 2018
G76	1.59	4.70	0.10-0.50	0.52-0.55	Lin et al., 2018
G77	1.60-2.74	9.80-12.89	0.10-0.50	0.52-0.55	Lin et al., 2018; Wang et al., 2018
G78	1.59	4.70	0.10-0.50	0.52-0.55	Lin et al., 2018
G79	0.95-1.40	1.40-4.93	0.10-0.50	0.50-0.52	Li et al., 2010; Lin et al., 2018; Xu et al., 2019
G80	0.95-2.20	4.93-18.01	0.10-0.50	0.52-0.55	Lin et al., 2018; Wang et al., 2018

2. RESULTS

2.1. Temperature variation

The mean sea surface temperature (SST) of Haizhou Bay during autumn was much higher in 2018 than that in 2011 (Fig. S1).

Fig. S1 Mean sea surface temperature (SST) of Haizhou Bay during autumn in 2011 and 2018.

REFERENCES

- Feng Jianfeng, Zhu Lin, Wang Hongli. 2010. Study on characters of coastal ecosystem in Bohai Bay with EwE. Marine Environmental Science (in Chinese), 29(6): 781-784+803
- Li Rui, Han Zhen, Cheng Heqin, et al. 2010. A preliminary study on biological resources energy flows bed on the Ecopath model in the East China Sea. Resources Science (in Chinese), 32(4): 600-605
- Lin Qun, Jin Xianshi, Zhang, Bo, et al. 2009. Comparative study on the changes of the Bohai Sea ecosystem structure based on Ecopath model between ten years. Acta Ecologica Sinica (in Chinese), 29 (7): 3613-3620
- Lin Qun, Wang Jun, Li Zhongyi, et al. 2018. Ecological carrying capacity of shellfish in the Yellow River estuary and its adjacent waters. Chinese Journal of Applied Ecology (in Chinese), 29(9): 3131-3138
- Liu Hongyan, Yang Chaojie, Zhang Peidong, et al. 2019. An Ecopath evaluation of system structure and function for the Laoshan Bay artificial reef zone ecosystem. Acta Ecologica Sinica (in Chinese), 39(11): 3926-3936
- Ren Xiaoming, Liu Yang, Xu Binduo, et al. 2020. Ecosystem structure in the Haizhou Bay and adjacent waters based on Ecopath model. Haiyang Xuebao (in Chinese), 42(6): 101-109
- Wang Yuanchao, Liang Cui, Xian Weiwei, et al. 2018. Ecopath based dynamic analyses of energy flows of Yangtze estuary and its adjacent waters. Marine Science (in Chinese), 42(5): 54-67
- Xu Xue, Tang Weiyao, Wang Yingbin. 2019. Releasing capacity of Portunus trituberculatus enhancement in Zhoushan fishing ground and Yangtze river estuary fishing ground and their adjacent waters. South China Fisheries Science (in Chinese), 15(3): 126-132