Home  >  Query result

Protoraphis Simonsen, a newly recorded marine epizoic diatom genus for China
Lang Li, Changping Chen, Lin Sun, Jiawei Zhang, Junrong Liang, Yahui Gao
doi: 10.1007/s13131-019-1467-z
Epizoic diatoms on marine copepods are common in nature and may have a special ecological relationship with their hosts. However, this special ecological group is not well known, and it has only rarely been studied in the China seas. To address this knowledge gap, the species diversity and classification of epizoic diatoms on planktonic copepods were studied with samples collected from the East China Sea. In the present study, a marine araphid diatom genus Protoraphis and its type species, Pr. hustedtiana, were observed and identified by light and electron microscopy, thus representing the first record of this genus and its type species in China. This genus is characterized by a median sternum strongly bent to opposite sides and terminate in two transapical grooves at the valve ends. Protoraphis hustedtiana was found to be epizoic on the posterior body appendages and segments of the marine calanoid copepod Candacia bradyi. An internal view shows a complex, ear-shaped process that is close to the apical slit field. The ecological habitats and geographical distributions of Protoraphis were also discussed, and, together with complementary morphological studies, our results have increased the number of records for marine epizoic diatoms to three genera with three species in China, including Pseudohimantidium and Pseudofalcula.
key words: marine epizoic diatom, copepod, Protoraphis, newly recorded genus, ear-shaped process
Morphological studies of six free-living spirotrichean ciliates (Protozoa: Ciliophora) with three new records from the coastal South China Sea
Xumiao CHEN, Kuidong XU
doi: 10.1007/s13131-018-1304-3
The living morphology and infraciliature of six spirotrichous ciliates collected from the coastal South China Sea were investigated using live observation and protargol impregnation. These are Euplotes woodruffi Gaw, 1939, Hemigastrostyla enigmatica (Dragesco and Dragesco-Kernéis, 1986) Song and Wilbert, 1997, Neourostylopsis flavicana (Wang et al., 2011) Chen et al., 2013, Protogastrostyla pulchra (Perejaslawzewa, 1886) Gong et al., 2007, Pseudoamphisiella alveolata (Kahl, 1932) Song and Warren, 2000, and Pseudokahliella marina (Foissner et al., 1982) Berger et al., 1985. Among these, Protogastrostyla pulchra, Pseudoamphisiella alveolata and Pseudokahliella marina are reported from the South China Sea for the first time, which manifest obvious differences apart from other Chinese populations. As new contribution, the detailed description of isolates from mangrove habitat of E. woodruffi andH. enigmatica, and aquaculture pond isolate of N. flavicana, are present.
key words: South China Sea, new record, ciliates, Spirotrichea, taxonomy
Wave prediction in a port using a fully nonlinear Boussinesq wave model
Young-Kwang Choi, Seung-Nam Seo, Jin-Yong Choi, Fengyan Shi, Kwang-Soon Park
doi: 10.1007/s13131-019-1456-2
A wave forecasting system using FUNWAVE-TVD which is based on the fully nonlinear Boussinesq equations by Chen (2006) was developed to provide an accurate wave prediction in the Port of Busan, South Korea. This system is linked to the Korea Operational Oceanographic System (KOOS) developed by Park et al. (2015). The computational domain covers a region of 9.6 km×7.0 km with a grid size of 2 m in both directions, which is sufficient to resolve short waves and dominant sea states. The total number of grid points exceeds 16 millions, making the model computational expensive. To provide real-time forecasting, an interpolation method, which is based on pre-calculated results of FUNWAVE-TVD and SWAN forecasting results at the FUNWAVE-TVD offshore boundary, was used. A total of 45 cases were pre-calculated, which took 71 days on 924 computational cores of a Linux cluster system. Wind wave generation and propagation from the deep water were computed using the SWAN in KOOS. SWAN results provided a boundary condition for the FUNWAVE-TVD forecasting system. To verify the model, wave observations were conducted at three locations inside the port in a time period of more than 7 months. A model/model comparison between FUNWAVE-TVD and SWAN was also carried out. It is found that, FUNWAVE-TVD improves the forecasting results significantly compared to SWAN which underestimates wave heights in sheltered areas due to incorrect physical mechanism of wave diffraction, as well as large wave heights caused by wave reflections inside the port.
key words: real-time wave forecasting, FUNWAVE-TVD, SWAN, KOOS, wave observations, wave diffraction

Year of publication

Related authors

Related hot words