Home  >  Query result

Spatio-temporal variability of phytoplankton assemblages and its controlling factors in spring and summer in the Subei Shoal of Yellow Sea, China
Yuanzi HUO, Honghua SHI, Jianheng ZHANG, Qiao LIU, Yuanliang DUAN, Qing HE, Kefeng YU, Hongsheng BI, Chunlei Fan, Peimin HE
doi: 10.1007/s13131-019-1345-2
The Subei Shoal is a special coastal area with complex physical oceanographic properties in the Yellow Sea. In the present study, the distribution of phytoplankton and its correlation with environmental factors were studied during spring and summer of 2012 in the Subei Shoal of the Yellow Sea. Phytoplankton species composition and abundance data were accomplished by Utermöhl method. Diatoms represented the greatest cellular abundance during the study period. In spring, the phytoplankton cell abundance ranged from 1.59×103 to 269.78×103 cell/L with an average of 41.80×103 cell/L, and Skeletonema sp. and Paralia sulcata was the most dominant species. In summer, the average phytoplankton cell abundance was 72.59×103 cell/L with the range of 1.78×103 to 574.96×103 cell/L, and the main dominant species was Pseudo-nitzschia pungens, Skeletonema sp., Dactyliosolen fragilissima and Chaetoceros curvisetus. The results of a redundancy analysis (RDA) showed that turbidity, temperature, salinity, pH, dissolved oxygen (DO), the ratio of dissolved inorganic nitrogen to silicate and SiO4-Si (DIN/SiO4-Si) were the most important environmental factors controlling phytoplankton assemblages in spring or summer in the Subei Shoal of the Yellow Sea.
key words: phytoplankton, Subei Shoal, eutrophication, turbidity, harmful algae blooms, Yellow Sea
An advanced wind vector retrieval algorithm for the rotating fan-beam scatterometer
Xuetong XIE, Ya WEN, Zhou HUANG
doi: 10.1007/s13131-017-1062-7
The rotating fan-beam scatterometer (RFSCAT) is a new type of satellite scatterometer that is proposed approximately 10 a ago. However, similar to other rotating scatterometers, relatively larger wind retrieval errors occur in the nadir and outer regions compared with the middle regions of the swath. For the RFSCAT with the given parameters, a wind direction retrieval accuracy decreases by approximately 9 in the outer regions compared with the middle region. To address this problem, an advanced wind vector retrieval algorithm for the RFSCAT is presented. The new algorithm features an adaptive extension of the range of wind direction for each wind vector cell position across the whole swath according to the distribution histogram of a retrieved wind direction bias. One hundred orbits of Level 2A data are simulated to validate and evaluate the new algorithm. Retrieval experiments demonstrate that the new advanced algorithm can effectively improve the wind direction retrieval accuracy in the nadir and outer regions of the RFSCAT swath. Approximately 1.6 and 9 improvements in the wind direction retrieval are achieved for the wind vector cells located at the nadir and the edge point of the swath, respectively.
key words: rotating fan-beam scatterometer, objective function, wind vector retrieval, distribution histogram of bias, wind direction extension

Year of publication

Related authors

Related hot words