Home  >  Query result

Migration patterns and habitat use of the tapertail anchovy Coilia mystus in the Oujiang River Estuary and the Zhujiang River Estuary, China
Tao Jiang, Hongbo Liu, Honghui Huang, Jian Yang
doi: 10.1007/s13131-019-1436-0
Habitat use of the tapertail anchovy (Coilia mystus Linnaeus, 1758) from the Oujiang River Estuary and the Zhujiang (Pearl) River Estuary was studied by examining the environmental signatures of Sr and Ca in otoliths using electron probe microanalysis. Individuals from the Oujiang River had higher and varied Sr:Ca ratios (expressed as (Sr:Ca)×1 000, 3.83–13.0 average) in the otolith core regions, suggesting that they were born in brackish or sea waters, and that a freshwater habitat might not be necessary for egg hatching and larval growth. While, individuals from the Zhujiang River had lower Sr:Ca ratios (0.39–2.51 average) in the core regions, suggesting a freshwater origin. After hatching, anchovies from the Zhujiang River migrate downstream to the river estuary close to brackish water. Our results demonstrated varied habitat use for spawning during stages of early life history between the two populations, and suggested that such variations are promoting diversity of life history strategies of this species.
key words: Coilia mystus, Oujiang River Estuary, Zhujiang (Pearl) River Estuary, habitat use, otolith microchemistry
Evaluation on data assimilation of a global high resolution wave-tide-circulation coupled model using the tropical Pacific TAO buoy observations
Junqiang SHI, Xunqiang YIN, Qi SHU, Bin XIAO, Fangli QIAO
doi: 10.1007/s13131-018-1196-2
In order to evaluate the assimilation results from a global high resolution ocean model, the buoy observations from tropical atmosphere ocean (TAO) during August 2014 to July 2015 are employed. The horizontal resolution of wave-tide-circulation coupled ocean model developed by The First Institute of Oceanography (FIOCOM model) is 0.1°×0.1°, and ensemble adjustment Kalman filter is used to assimilate the sea surface temperature (SST), sea level anomaly (SLA) and Argo temperature/salinity profiles. The simulation results with and without data assimilation are examined. First, the overall statistic errors of model results are analyzed. The scatter diagrams of model simulations versus observations and corresponding error probability density distribution show that the errors of all the observed variables, including the temperature, isotherm depth of 20°C (D20), salinity and two horizontal component of velocity are reduced to some extent with a maximum improvement of 54% after assimilation. Second, time-averaged variables are used to investigate the horizontal and vertical structures of the model results. Owing to the data assimilation, the biases of the time-averaged distribution are reduced more than 70% for the temperature and D20 especially in the eastern Pacific. The obvious improvement of D20 which represents the upper mixed layer depth indicates that the structure of the temperature after the data assimilation becomes more close to the reality and the vertical structure of the upper ocean becomes more reasonable. At last, the physical processes of time series are compared with observations. The time evolution processes of all variables after the data assimilation are more consistent with the observations. The temperature bias and RMSE of D20 are reduced by 76% and 56% respectively with the data assimilation. More events during this period are also reproduced after the data assimilation. Under the condition of strong 2014/2016 El Niño, the Equatorial Undercurrent (EUC) from the TAO is gradually increased during August to November in 2014, and followed by a decreasing process. Since the improvement of the structure in the upper ocean, these events of the EUC can be clearly found in the assimilation results. In conclusion, the data assimilation in this global high resolution model has successfully reduced the model biases and improved the structures of the upper ocean, and the physical processes in reality can be well produced.
key words: tropical Pacific, tropical atmosphere ocean, data assimilation, evaluation

Year of publication

Related authors

Related hot words