Liu Mengtan, Tao Zhencheng, Zhang Ye, Yang Guang, Sun Song, Li Chaolun, Le Fengfeng. Feeding strategies of Euphausia superba in the eastern South Shetland Islands in austral summer[J]. Acta Oceanologica Sinica, 2019, 38(10): 75-83. doi: 10.1007/s13131-019-1392-8
Citation: Liu Mengtan, Tao Zhencheng, Zhang Ye, Yang Guang, Sun Song, Li Chaolun, Le Fengfeng. Feeding strategies of Euphausia superba in the eastern South Shetland Islands in austral summer[J]. Acta Oceanologica Sinica, 2019, 38(10): 75-83. doi: 10.1007/s13131-019-1392-8

Feeding strategies of Euphausia superba in the eastern South Shetland Islands in austral summer

doi: 10.1007/s13131-019-1392-8
  • Received Date: 2018-08-06
  • Euphausia superba is a key species in the Southern Ocean that serves as a link between primary production and higher trophic levels. To investigate the feeding strategies of E. superba from the eastern South Shetland Islands, fatty acid biomarkers, stable isotope signatures, and an incubation experiment were conducted. The results of the incubation experiment proved that adult E. superba mainly fed on 2–20 μm particles, demonstrating the importance of nanoplankton in their diet. Moreover, significant positive relationships between δ15N and body size demonstrated that size-related dietary shifts were present in E. superba. Evidence from principal component analysis and the C16:1ω7/C18:4ω3 ratio showed that juveniles preferentially fed on dinoflagellates and adults were more likely to feed on diatoms. Fatty acid profiles in adult E. superba roughly mirrored the different trophic conditions and feeding strategies between stations. Adult E. superba at Stas D2-07, D5-07, DA-01 and DA-02 exhibited elevated levels of C16:1ω7, C18:4ω3, C18:1ω9 and C18:1ω9/C18:1ω7, indicating higher levels of feeding on both phytoplankton and higher trophic diets. In contrast, adult E. superba at Stas D1-03 and D1-04 were characterized by high levels of polyunsaturated fatty acids/saturated fatty acids ratios and low levels of C16:1ω7, C18:1ω7, C18:4ω3, C18:1ω9 and total fatty acids. We inferred that adult krill at Stas D1-03 and D1-04 still suffered from difficult dietary conditions after overwintering. The different dietary conditions between stations suggest a highly plastic feeding strategy of E. superba in the eastern South Shetland Islands.
  • loading
  • Atkinson A, Meyer B, Stuübing D, et al. 2002. Feeding and energy budgets of Antarctic krill Euphausia superba at the onset of winter: Ⅱ. Juveniles and adults. Limnology and Oceanography, 47(4): 953–966
    Clarke A. 1980. The biochemical composition of krill, Euphausia Superba dana, from South Georgia. Journal of Experimental Marine Biology and Ecology, 43(3): 221–236, doi: 10.1016/0022-0981(80)90049-0
    Cripps G C, Atkinson A. 2000. Fatty acid composition as an indicator of carnivory in Antarctic krill, Euphausia superba. Canadian Journal of Fisheries and Aquatic Sciences, 57(S3): 31–37, doi: 10.1139/f00-167
    Cripps G C, Watkins J L, Hill H J, et al. 1999. Fatty acid content of Antarctic krill Euphausia superba at South Georgia related to regional populations and variations in diet. Marine Ecology Progress Series, 181: 177–188, doi: 10.3354/meps181177
    Dalsgaard J, St John M, Kattner G, et al. 2003. Fatty acid trophic markers in the pelagic marine environment. Advances in Marine Biology, 46: 225–340, doi: 10.1016/S0065-2881(03)46005-7
    El-Sabaawi R, Dower J F, Kainz M, et al. 2009. Characterizing dietary variability and trophic positions of coastal calanoid copepods: insight from stable isotopes and fatty acids. Marine Biology, 156(3): 225–237, doi: 10.1007/s00227-008-1073-1
    Falk-Petersen S, Hagen W, Kattner G, et al. 2000. Lipids, trophic relationships, and biodiversity in Arctic and Antarctic krill. Canadian Journal of Fisheries and Aquatic Sciences, 57(S3): 178–191, doi: 10.1139/f00-194
    Falk-Petersen S, Sargent J R, Lønne O J, et al. 1999. Functional biodiversity of lipids in Antarctic zooplankton: calanoides acutus, Calanus propinquus, Thysanoessa macrura and Euphausia crystallorophias. Polar Biology, 21(1): 37–47, doi: 10.1007/s003000050330
    Flexas M M, Schodlok M P, Padman L, et al. 2015. Role of tides on the formation of the Antarctic Slope Front at the Weddell-Scotia Confluence. Journal of Geophysical Research: Oceans, 120(5): 3658–3680, doi: 10.1002/2014JC010372
    Folch J, Lees M, Sloane Stanley G H. 1957. A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226(1): 497–509
    Graham B S, Grubbs D, Holland K, et al. 2007. A rapid ontogenetic shift in the diet of juvenile yellowfin tuna from Hawaii. Marine Biology, 150(4): 647–658
    Hagen W, Kattner G, Terbrüggen A, et al. 2001. Lipid metabolism of the Antarctic krill Euphausia superba and its ecological implications. Marine Biology, 139(1): 95–104, doi: 10.1007/s002270000527
    Hagen W, Yoshida T, Virtue P, et al. 2007. Effect of a carnivorous diet on the lipids, fatty acids and condition of Antarctic krill, Euphausia superba. Antarctic Science, 19(2): 183–188, doi: 10.1017/S0954102007000259
    Hamner W M. 1988. Biomechanics of filter feeding in the Antarctic krill Euphausia superba: review of past work and new observations. Journal of Crustacean Biology, 8(2): 149–163, doi: 10.2307/1548308
    Hewitt R P, Watkins J, Naganobu M, et al. 2004. Biomass of Antarctic krill in the Scotia Sea in January/February 2000 and its use in revising an estimate of precautionary yield. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 51(12–13): 1215–1236, doi: 10.1016/S0967-0645(04)00076-1
    Heywood K J, Naveira Garabato A C, Stevens D P, et al. 2004. On the fate of the Antarctic Slope Front and the origin of the Weddell Front. Journal of Geophysical Research: Oceans, 109(C6): C06021
    Hofmann E E, Klinck J M, Locarnini R A, et al. 1998. Krill transport in the Scotia Sea and environs. Antarctic Science, 10(4): 406–415, doi: 10.1017/S0954102098000492
    Ju S J, Harvey H R. 2004. Lipids as markers of nutritional condition and diet in the Antarctic krill Euphausia superba and Euphausia crystallorophias during austral winter. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 51(17–19): 2199–2214, doi: 10.1016/j.dsr2.2004.08.004
    Kattner G, Fricke H S G. 1986. Simple gas-liquid chromatographic method for the simultaneous determination of fatty acids and alcohols in wax esters of marine organisms. Journal of Chromatography A, 361: 263–268, doi: 10.1016/S0021-9673(01)86914-4
    Kattner G, Hagen W, Lee R F, et al. 2007. Perspectives on marine zooplankton lipids. Canadian Journal of Fisheries and Aquatic Sciences, 64(11): 1628–1639, doi: 10.1139/f07-122
    Ko A R, Yang E J, Kim M S, et al. 2016. Trophodynamics of euphausiids in the Amundsen Sea during the austral summer by fatty acid and stable isotopic signatures. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 123: 78–85, doi: 10.1016/j.dsr2.2015.04.023
    Lee R F, Hagen W, Kattner G. 2006. Lipid storage in marine zooplankton. Marine Ecology Progress Series, 307: 273–306, doi: 10.3354/meps307273
    Meyer B, Fuentes V, Guerra C, et al. 2009. Physiology, growth, and development of larval krill Euphausia superba in autumn and winter in the Lazarev Sea, Antarctica. Limnology and Oceanography, 54(5): 1595–1614, doi: 10.4319/lo.2009.54.5.1595
    Miller A K, Trivelpiece W Z. 2007. Cycles of Euphausia superba recruitment evident in the diet of Pygoscelid penguins and net trawls in the South Shetland Islands, Antarctica. Polar Biology, 30(12): 1615–1623, doi: 10.1007/s00300-007-0326-7
    Nicol S, Constable A J, Pauly T. 2000. Estimates of circumpolar abundance of Antarctic krill based on recent acoustic density measurements. CCAMLR Science, 7: 87–99
    Nicol S, De La Mare W K, Stolp M. 1995. The energetic cost of egg production in Antarctic krill (Euphausia superba Dana). Antarctic Science, 7(1): 25–30, doi: 10.1017/S0954102095000058
    Park J I, Kang C K, Suh H L. 2011. Ontogenetic diet shift in the euphausiid Euphausia pacifica quantified using stable isotope analysis. Marine Ecology Progress Series, 429: 103–109, doi: 10.3354/meps09091
    Parrish C C. 1999. Determination of total lipid, lipid classes, and fatty acids in aquatic samples. In: Arts M T, Wainman B C, eds. Lipids in Freshwater Ecosystem. New York: Springer-Verlag, 4–20
    Phleger C F, Nelson M M, Mooney B D, et al. 2002. Erratum to: “Interannual and between species comparison of the lipids, fatty acids and sterols of Antarctic krill from the US AMLR Elephant Island survey area”: [Comp. Biochem. Physiol. B 131 (2002) 733–747]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 132(4): 819–820, doi: 10.1016/S1096-4959(02)00086-6
    Polito M J, Reiss C S, Trivelpiece W Z, et al. 2013. Stable isotopes identify an ontogenetic niche expansion in Antarctic krill (Euphausia superba) from the South Shetland Islands, Antarctica. Marine Biology, 160(6): 1311–1323, doi: 10.1007/s00227-013-2182-z
    Quetin L B, Ross R M, Clarke A. 1994. Krill energetics: seasonal and environmental aspects of the physiology of Euphausia superba. In: El-Sayed S Z, ed. Southern Ocean Ecology: The BIOMASS Perspective. Cambridge: Cambridge University Press, 165–184
    Schmidt K, Atkinson A. 2016. Feeding and food processing in Antarctic krill (Euphausia superba Dana). In: Siegel V, ed. Biology and Ecology of Antarctic Krill. Cham: Springer International Publishing, 175–224
    Schmidt K, Atkinson A, Petzke K J, et al. 2006. Protozoans as a food source for Antarctic krill, Euphausia superba: complementary insights from stomach content, fatty acids, and stable isotopes. Limnology and Oceanography, 51(5): 2409–2427, doi: 10.4319/lo.2006.51.5.2409
    Schmidt K, Atkinson A, Pond D W, et al. 2014. Feeding and overwintering of Antarctic krill across its major habitats: the role of sea ice cover, water depth, and phytoplankton abundance. Limnology and Oceanography, 59(1): 17–36, doi: 10.4319/lo.2014.59.1.0017
    Schmidt K, Atkinson A, Steigenberger S, et al. 2011. Seabed foraging by Antarctic krill: implications for stock assessment, bentho-pelagic coupling, and the vertical transfer of iron. Limnology and Oceanography, 56(4): 1411–1428, doi: 10.4319/lo.2011.56.4.1411
    Schmidt K, McClelland J W, Mente E, et al. 2004. Trophic-level interpretation based on δ15N values: implications of tissue-specific fractionation and amino acid composition. Marine Ecology Progress Series, 266: 43–58, doi: 10.3354/meps266043
    Schukat A, Auel H, Teuber L, et al. 2014. Complex trophic interactions of calanoid copepods in the Benguela upwelling system. Journal of Sea Research, 85: 186–196, doi: 10.1016/j.seares.2013.04.018
    Smetacek V, Nicol S. 2005. Polar ocean ecosystems in a changing world. Nature, 437(7057): 362–368, doi: 10.1038/nature04161
    Spiridonov V A. 1995. Spatial and temporal variability in reproductive timing of Antarctic krill (Euphausia superba Dana). Polar Biology, 15(3): 161–174
    Stübing D, Hagen W. 2003. Fatty acid biomarker ratios—suitable trophic indicators in Antarctic euphausiids?. Polar Biology, 26(12): 774–782, doi: 10.1007/s00300-003-0550-8
    Stübing D, Hagen W, Schmidt K. 2003. On the use of lipid biomarkers in marine food web analyses: an experimental case study on the Antarctic krill, Euphausia superba. Limnology and Oceanography, 48(4): 1685–1700, doi: 10.4319/lo.2003.48.4.1685
    Suh H L, Nemoto T. 1987. Comparative morphology of filtering structure of five species of Euphausia (Euphausiacea, Crustacea) from the Antarctic Ocean. Proceedings of the NIPR Symposium on Polar Biology, 1: 72–83
    Ter Braak C J F, Šmilauer P. 2012. Canoco Reference Manual and User’s Guide: Software for Ordination. Version 5.0. Ithaca, USA: Microcomputer Power
    Thompson A F, Heywood K J, Thorpe S E, et al. 2009. Surface circulation at the tip of the Antarctic Peninsula from drifters. Journal of Physical Oceanography, 39(1): 3–26, doi: 10.1175/2008JPO3995.1
    Töbe K, Meyer B, Fuentes V. 2010. Detection of zooplankton items in the stomach and gut content of larval krill, Euphausia superba, using a molecular approach. Polar Biology, 33(3): 407–414, doi: 10.1007/s00300-009-0714-2
    Yang Guang, Li Chaolun, Guilini K, et al. 2016. Feeding strategies of four dominant copepod species in Prydz Bay, Antarctica: insights from a combined fatty acid biomarker and stable isotopic approach. Deep Sea Research Part I: Oceanographic Research Papers, 114: 55–63, doi: 10.1016/j.dsr.2016.04.016
    Yoshida T, Virtue P, Kawaguchi S, et al. 2011. Factors determining the hatching success of Antarctic krill Euphausia superba embryo: lipid and fatty acid composition. Marine Biology, 158(10): 2313–2325, doi: 10.1007/s00227-011-1735-2
    Zhang Ye, Li Chaolun, Liu Mengtan, et al. 2016. Abundance and structure of dominant zooplankton species in austral summer near South Shetland Islands, Antarctica. Oceanologia et Limnologia Sinica (in Chinese), 47(5): 945–953
    Zhu Genhai. 1993. Analysis of the stomach contents of Antarctic krill, Euphausia superba Dana. Antarctic Research, 4(2): 11–20
    Zhu Guoping, Zhang Haiting, Song Qi, et al. 2018. Inferring trophic variation for Antarctic krill (Euphausia superba) in the Antarctic Peninsula from the austral fall to early winter using stable isotope analysis. Acta Oceanologica Sinica, 37(6): 90–95, doi: 10.1007/s13131-018-1176-6
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (392) PDF downloads(202) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return