JIANG Zong-Pei, YUAN Jiajun, HARTMAN Susan E., FAN Wei. Enhancing the observing capacity for the surface ocean by the use of Volunteer Observing Ship[J]. Acta Oceanologica Sinica, 2019, 38(7): 114-120. doi: 10.1007/s13131-019-1463-3
Citation: JIANG Zong-Pei, YUAN Jiajun, HARTMAN Susan E., FAN Wei. Enhancing the observing capacity for the surface ocean by the use of Volunteer Observing Ship[J]. Acta Oceanologica Sinica, 2019, 38(7): 114-120. doi: 10.1007/s13131-019-1463-3

Enhancing the observing capacity for the surface ocean by the use of Volunteer Observing Ship

doi: 10.1007/s13131-019-1463-3
  • Received Date: 2018-07-02
  • Knowledge of the surface ocean dynamics and the underlying controlling mechanisms is critical to understand the natural variability of the ocean and to predict its future response to climate change. In this paper, we highlight the potential use of Volunteer Observing Ship (VOS), as carrier for automatic underway measuring system and as platform for sample collection, to enhance the observing capacity for the surface ocean. We review the concept, history, present status and future development of the VOS-based in situ surface ocean observation. The successes of various VOS projects demonstrate that, along with the rapid advancing sensor techniques, VOS is able to improve the temporal resolution and spatial coverage of the surface ocean observation in a highly cost-effective manner. A sustained and efficient marine monitoring system in the future should integrate the advantages of various observing platforms including VOS.
  • loading
  • Ainsworth C. 2008. FerryBoxes begin to make waves. Science, 322(5908):1627-1629, doi: 10.1126/science.322.5908.1627
    Andrady A L. 2011. Microplastics in the marine environment. Marine Pollution Bulletin, 62(8):1596-1605, doi: 10.1016/j.marpolbul.2011.05.030
    Aßmann S, Frank C, Körtzinger A. 2011. Spectrophotometric high-precision seawater pH determination for use in underway measuring systems. Ocean Science, 7(5):597-607, doi: 10.5194/os-7-597-2011
    Bakker D C E, Pfeil B, Landa C S, et al. 2016. A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8(2):383-413, doi: 10.5194/essd-8-383-2016
    Bandstra L, Hales B, Takahashi T. 2006. High-frequency measurements of total CO2:method development and first oceanographic observations. Marine Chemistry, 100(1-2):24-38
    Beggs H M, Verein R, Paltoglou G, et al. 2012. Enhancing ship of opportunity sea surface temperature observations in the Australian region. Journal of Operational Oceanography, 5(1):59-73, doi: 10.1080/1755876X.2012.11020132
    Brander K M, Dickson R R, Edwards M. 2003. Use of continuous plankton recorder information in support of marine management:applications in fisheries, environmental protection, and in the study of ecosystem response to environmental change. Progress in Oceanography, 58(2-4):175-191
    Cassar N, Barnett B A, Bender M L, et al. 2009. Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry. Analytical Chemistry, 81(5):1855-1864, doi: 10.1021/ac802300u
    De La Paz M, Padín X A, Ríos A F, et al. 2010. Surface fCO2 variability in the Loire plume and adjacent shelf waters:high spatio-temporal resolution study using ships of opportunity. Marine Chemistry, 118(3-4):108-118
    DeGrandpre M D, Hammar T R, Smith S P, et al. 1995. In situ measurements of seawater pCO2. Limnology and Oceanography, 40(5):969-975, doi: 10.4319/lo.1995.40.5.0969
    Diercks-Horn S, Metfies K, Jäckel S, et al. 2011. The ALGADEC device:a semi-automated rRNA biosensor for the detection of toxic algae. Harmful Algae, 10(4):395-401, doi: 10.1016/j.hal.2011.02.001
    Donlon C, Robinson I S, Wimmer W, et al. 2008. An infrared sea surface temperature autonomous radiometer (ISAR) for deployment aboard volunteer observing ships (VOS). Journal of Atmospheric and Oceanic Technology, 25(1):93-113, doi: 10.1175/2007JTECHO505.1
    Dumousseaud C, Achterberg E P, Tyrrell T, et al. 2010. Contrasting effects of temperature and winter mixing on the seasonal and inter-annual variability of the carbonate system in the Northeast Atlantic Ocean. Biogeosciences, 7(5):1481-1492, doi: 10.5194/bg-7-1481-2010
    Frank C, Schroeder F, Ebinghaus R, et al. 2006. A fast sequential injection analysis system for the simultaneous determination of ammonia and phosphate. Microchimica Acta, 154(1-2):31-38
    Fuda J L, Millot C, Taupier-Letage I, et al. 2000. XBT monitoring of a meridian section across the western Mediterranean Sea. Deep Sea Research Part I:Oceanographic Research Papers, 47(11):2191-2218, doi: 10.1016/S0967-0637(00)00018-2
    Garcia-Soto C, Pingree R D. 2009. Spring and summer blooms of phytoplankton (SeaWiFS/MODIS) along a ferry line in the Bay of Biscay and western English Channel. Continental Shelf Research, 29(8):1111-1122, doi: 10.1016/j.csr.2008.12.012
    Goni G, Roemmich D, Molinari R, et al. 2010. The ship of opportunity program. In:Proceedings of OceanObs' 09:Sustained Ocean Observations and Information for Society (Vol. 2). Venice, Italy:ESA Publication
    Grayek S, Staneva J, Schulz-Stellenfleth J, et al. 2011. Use of FerryBox surface temperature and salinity measurements to improve model based state estimates for the German Bight. Journal of Marine Systems, 88(1):45-59, doi: 10.1016/j.jmarsys.2011.02.020
    Haller M, Janssen F, Siddorn J, et al. 2015. Evaluation of numerical models by FerryBox and fixed platform in situ data in the southern North Sea. Ocean Science, 11(6):879-896, doi: 10.5194/os-11-879-2015
    Hartman S E, Hartman M C, Hydes D J, et al. 2014a. Seasonal and inter-annual variability in nutrient supply in relation to mixing in the Bay of Biscay. Deep Sea Research Part Ⅱ:Topical Studies in Oceanography, 106:68-75, doi: 10.1016/j.dsr2.2013.09.032
    Hartman S E, Hartman M C, Hydes D J, et al. 2014b. The role of hydrographic parameters, measured from a ship of opportunity, in bloom formation of Karenia mikimotoi in the English Channel. Journal of Marine Systems, 140:39-49, doi: 10.1016/j.jmarsys.2014.07.001
    Hydes D J, Campbell J M. 2007. SNOMS swire NOCS ocean monitoring system:diary of the system development and installation on the MV Pacific Celebes in 2006 and 2007. Southampton:National Oceanography Centre
    Hydes D J, Hartman M C, Campbell J M, et al. 2013. Report of the SNOMS project 2006 to 2012 (part 1-narrative description). Southampton:National Oceanography Centre
    Hydes D J, Hartman M C, Kaiser J, et al. 2009. Measurement of dissolved oxygen using optodes in a FerryBox system. Estuarine, Coastal and Shelf Science, 83(4):485-490, doi: 10.1016/j.ecss.2009.04.014
    Jiang Z P, Hydes D J, Hartman S E, et al. 2014a. Application and assessment of a membrane-based pCO2 sensor under field and laboratory conditions. Limnology and Oceanography:Methods, 12(4):264-280, doi: 10.4319/lom.2014.12.264
    Jiang Z P, Hydes D J, Tyrrell T, et al. 2013. Key controls on the seasonal and interannual variations of the carbonate system and air-sea CO2 flux in the Northeast Atlantic (Bay of Biscay). Journal of Geophysical Research-Oceans, 118(2):785-800, doi: 10.1002/jgrc.20087
    Jiang Z P, Tyrrell T, Hydes D J, et al. 2014b. Variability of alkalinity and the alkalinity-salinity relationship in the tropical and subtropical surface ocean. Global Biogeochemical Cycles, 28(7):729-742, doi: 10.1002/2013GB004678
    Kelly-Gerreyn B A, Hydes D J, Hartman M C, et al. 2007. The phosphoric acid leak from the wreck of the MV Ece in the English Channel in 2006:assessment with a ship of opportunity, an operational ecosystem model and historical data. Marine Pollution Bulletin, 54(7):850-862, doi: 10.1016/j.marpolbul.2007.04.020
    Kikas V, Lips U. 2016. Upwelling characteristics in the Gulf of Finland (Baltic Sea) as revealed by Ferrybox measurements in 2007-2013. Ocean Science, 12(3):843-859, doi: 10.5194/os-12-843-2016
    Korres G, Nittis K, Hoteit I, et al. 2009. A high resolution data assimilation system for the Aegean Sea hydrodynamics. Journal of Marine Systems, 77(3):325-340, doi: 10.1016/j.jmarsys.2007.12.014
    Li Q L, Wang F Z, Wang Z A, et al. 2013. Automated spectrophotometric analyzer for rapid single-point titration of seawater total alkalinity. Environmental Science & Technology, 47(19):11139-11146
    Liu J Y. 2009. Development and Management Status of Voluntary Observing Ships in China. Marine Science Bulletin, 11(1):90-96
    Lu Z M, Dai M H, Xu K M, et al. 2008. A high precision, fast response, and low power consumption in situ optical fiber chemical pCO2 sensor. Talanta, 76(2):353-359, doi: 10.1016/j.talanta.2008.03.005
    Lüger H, Wanninkhof R, Wallace D W R, et al. 2006. CO2 fluxes in the subtropical and subarctic North Atlantic based on measurements from a volunteer observing ship. Journal of Geophysical Research-Oceans, 111(C6):C06024
    Martz T R, Dickson A G, DeGrandpre M D. 2006. Tracer monitored titrations:measurement of total alkalinity. Analytical Chemistry, 78(6):1817-1826, doi: 10.1021/ac0516133
    Ostle C, Johnson M, Landschützer P, et al. 2015. Net community production in the North Atlantic Ocean derived from Volunteer Observing Ship data. Global Biogeochemical Cycles, 29(1):80-95, doi: 10.1002/2014GB004868
    Petersen W. 2014. FerryBox systems:state-of-the-art in Europe and future development. Journal of Marine Systems, 140:4-12, doi: 10.1016/j.jmarsys.2014.07.003
    Petersen W, Colijn F. 2017. Ferrybox whitebook. Brussels:EuroGOOS Publication
    Petersen W, Schroeder F, Bockelmann F D. 2011. FerryBox-application of continuous water quality observations along transects in the North Sea. Ocean Dynamics, 61(10):1541-1554, doi: 10.1007/s10236-011-0445-0
    Reid P C, Colebrook J M, Matthews J B L, et al. 2003. The Continuous Plankton Recorder:concepts and history, from Plankton Indicator to undulating recorders. Progress in Oceanography, 58(2-4):117-173
    Reid P C, Edwards M, Hunt H G, et al. 1998. Phytoplankton change in the North Atlantic. Nature, 391(6667):546, doi: 10.1038/35290
    Rossby T, Siedler G, Zenk W. 1995. The volunteer observing ship and future ocean monitoring. Bulletin of the American Meteorological Society, 76(1):5-12, doi: 10.1175/1520-0477(1995)076<0005:TVOSAF>2.0.CO;2
    Rubin S I, Wu H P. 2000. A novel fiber-optic sensor for the long-term, autonomous measurement of pCO2 in seawater. In:Proceedings of OCEANS 2000 MTS/IEEE Conference and Exhibition. V 1. Providence:IEEE, 631-639
    Sayles F L, Eck C. 2009. An autonomous instrument for time series analysis of TCO2 from oceanographic moorings. Deep Sea Research Part I:Oceanographic Research Papers, 56(9):1590-1603, doi: 10.1016/j.dsr.2009.04.006
    Schneider B, Kaitala S, Maunula P. 2006. Identification and quantification of plankton bloom events in the Baltic Sea by continuous pCO2 and chlorophyll a measurements on a cargo ship. Journal of Marine Systems, 59(3-4):238-248
    Seppälä J, Ylöstalo P, Kaitala S, et al. 2007. Ship-of-opportunity based phycocyanin fluorescence monitoring of the filamentous cyanobacteria bloom dynamics in the Baltic Sea. Estuarine, Coastal and Shelf Science, 73(3-4):489-500
    Tengberg A, Hovdenes J, Andersson H J, et al. 2006. Evaluation of a lifetime-based optode to measure oxygen in aquatic systems. Limnology and Oceanography-Methods, 4(2):7-17, doi: 10.4319/lom.2006.4.7
    Thyssen M, Alvain S, Lefèbvre A, et al. 2015. High-resolution analysis of a North Sea phytoplankton community structure based on in situ flow cytometry observations and potential implication for remote sensing. Biogeosciences, 12(13):4051-4066, doi: 10.5194/bg-12-4051-2015
    Wang Z A, Cai W J, Wang Y C, et al. 2003. A long pathlength liquid-core waveguide sensor for real-time pCO2 measurements at sea. Marine Chemistry, 84(1-2):73-84
    Wang Z A, Chu S N, Hoering K A. 2013. High-frequency spectrophotometric measurements of total dissolved inorganic carbon in seawater. Environmental Science & Technology, 47(14):7840-7847
    Wang Z H, Wang Y C, Cai W J, et al. 2002. A long pathlength spectrophotometric pCO2 sensor using a gas-permeable liquid-core waveguide. Talanta, 57(1):69-80, doi: 10.1016/S0039-9140(02)00008-5
    Wollschlager J, Grunwald M, Röttgers R, et al. 2013. Flow-through PSICAM:a new approach for determining water constituents absorption continuously. Ocean Dynamics, 63(7):761-775, doi: 10.1007/s10236-013-0629-x
    Zubkov M V, Sleigh M A, Burkill P H. 2000. Assaying picoplankton distribution by flow cytometry of underway samples collected along a meridional transect across the Atlantic Ocean. Aquatic Microbial Ecology, 21(1):13-20
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (562) PDF downloads(573) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return