Mantle melting beneath the Southwest Indian Ridge: signals from clinopyroxene in abyssal peridotites

WANG Wei CHU Fengyou ZHU Jihao DONG Yanhui YU Xing CHEN Ling LI Zhenggang

WANGWei, CHUFengyou, ZHUJihao, DONGYanhui, YUXing, CHENLing, LIZhenggang. Mantle melting beneath the Southwest Indian Ridge: signals from clinopyroxene in abyssal peridotites[J]. 海洋学报英文版, 2013, 32(12): 50-59. doi: 10.1007/s13131-013-0387-0
引用本文: WANGWei, CHUFengyou, ZHUJihao, DONGYanhui, YUXing, CHENLing, LIZhenggang. Mantle melting beneath the Southwest Indian Ridge: signals from clinopyroxene in abyssal peridotites[J]. 海洋学报英文版, 2013, 32(12): 50-59. doi: 10.1007/s13131-013-0387-0
WANG Wei, CHU Fengyou, ZHU Jihao, DONG Yanhui, YU Xing, CHEN Ling, LI Zhenggang. Mantle melting beneath the Southwest Indian Ridge: signals from clinopyroxene in abyssal peridotites[J]. Acta Oceanologica Sinica, 2013, 32(12): 50-59. doi: 10.1007/s13131-013-0387-0
Citation: WANG Wei, CHU Fengyou, ZHU Jihao, DONG Yanhui, YU Xing, CHEN Ling, LI Zhenggang. Mantle melting beneath the Southwest Indian Ridge: signals from clinopyroxene in abyssal peridotites[J]. Acta Oceanologica Sinica, 2013, 32(12): 50-59. doi: 10.1007/s13131-013-0387-0

Mantle melting beneath the Southwest Indian Ridge: signals from clinopyroxene in abyssal peridotites

doi: 10.1007/s13131-013-0387-0
基金项目: The National Key Basic Research Program of China under contract No. 2013CB429700; National Special Fund for the 12th Five Year Plan of COMRA under contract Nos DY125-12-R-02 and DY125-11-R-05; Shandong Province Natural Science Foundation of China for Distinguished Young Scholars under contract No. JQ200913; the National Natural Science Foundation of China under contract Nos 40830849, 40976027 and 40906029.

Mantle melting beneath the Southwest Indian Ridge: signals from clinopyroxene in abyssal peridotites

  • 摘要: The mineral chemistry and texture of clinopyroxenes in peridotite from the Kingkong tectonic zone of the Southwest Indian Ridge segment in an effort to constrain mantle melting beneath this slow-spreading ridge are reported. There are three types of clinopyroxenes in the abyssal peridotites: coarse-grained, intergranular and exsolved. The compositional variations among these three types suggest that the coarse-grained clinopyroxene is a mantle-derived source. The Al, Na and Ti contents and the Na/Ti ratio of the coarse-grained clinopyroxene may be used to monitor the degree of partial melting, combined with the contradistinction with Spinel Cr#, which is calculated to be between 7.9% and 14.9%, and may represent low degrees of melting in the global ocean ridge system. The along-axis compositional variations in the coarse-grained clinopyroxene suggest that the degree of partial melting is primarily controlled by the transform faults on both sides of the ridge. Nonetheless, the northwestern side of the ridge may be affected by a hypothesised detachment fault as documented by the calculated P-T conditions. Simultaneously high Na and low Ti contents in the coarse-grained clinopyroxene points to mantle heterogeneities along the ridge axis.
  • Baker M B, Stolper E M. 1994. Determining the composition of high-pressure mantle melts using diamond aggregates. GeochemCosmochemActa, 58: 2811-2827
    Bodinier J L, Godard M. 2005.The Mantle and Core. Treatise on Geochemistry, 2: 103
    Bottinga Y, Allègre C J. 1978. Partial melting under spreading ridges. Philos Trans R Soc London Ser, 288: 501-525
    Brown J W, White R S. 1994. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet, 121: 435-449
    Brey G P, Kohler T P. 1990. Geothermobarometry in four phase lherzolite: New thermobar-ometers and practical assessment of existing thermobarometers. Journal of Petrology, 31: 353-378
    Bussod G Y, Christie J M. 1991. Textural development and melt topology in spinel lherzolite experimentally deformed at hypersolidus conditions. Journal of Petrology, (special lherzolite issue): 17-39
    Daines M J, Kohlstedt D L. 1997. Influence of deformation on melt topology in peridotites. Journal of Geophysical Research, 107(10): 257-10271
    Dick H J B, Fisher R L, Bryan W B. 1984. Mineralogic variability of the uppermost mantle along mid-ocean ridges. Earth Planet, 69: 88-106
    Dick H J B. 1989. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. GeolSoc, 42: 71-105
    Falloon T J, Green D H. 1997. Experimental tests of low degree peridotiteparitial melt compositions:implications for the nature of anhydrous nearsolidusperidotite melts at 1.0 GPa. Earth Planet SciLett, 152: 149-162
    Forsyth D W. 1992. Geophysical constraints on mantle flow and melt generation beneath ocean-ridges, in Mantle Flow and Melt Generation at Mid-Ocean Ridges. GeophysMonogr, 71: 1-66
    Ghose I, Cannat M, Seyler M. 1996. Transform fault effect on mantle melting in the MARK area (Mid-Atlantic Ridge south of the Kane transform). Geology, 24: 1139-1142
    Hellebrand E, Snow J E, Dick H J B. 2001. Coupled major and trace elements as indicators of the extent of melting in mid-ocean-ridge peridotites. Nature, 410: 677-681
    Hellebrand E, Snow J E, Mulhe R. 2002. Mantle melting beneath the Gakkel Ridge (Arctic Ocean): abyssal peridotite spinel compositions. Chemical Geology, 182: 227-235
    Johnson K T M, Dick H J B. 1992. Open system melting and the temporal and spatial variation of peridotite and basalt compositions at the Atlantis II F.Z. Geophys, 97: 9219-9241
    Kinzler R J, Grove T L. 1992. Primary magmas of mid-ocean ridge basalts.Geophys, 97: 6885-6926
    Li Xiaohu, Chu Fengyou, Lei Jijiang, et al. 2008. Advances in slow-ultraslow-spreading southwest Indian ridge. Advances in Erath Science (in Chinese), 23(6): 595-603
    Mckenzie D, O’Nions R K. 1995. The source regions of ocean island basalts. Journal of petrology, 36: 133-159
    Meyzen C, Humler E, Ludden J, et al. 2003. Geochemical indicators of a major discontinuity in mantle composition along with Southwest Indian Ridge. Nature, 421: 731-733
    Morimoto N, Fabries J, Ferguson A K, et al. 1998.Nomenclature of pyroxenes. Mineralogical Magazine, 52: 535-550
    Nimis P, Taylor W R. 2000. Single clinopyroxenethermobarometry for garnet peridotites.Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-cpx thermometer.Contrib Mineral Petrol, 139: 541-554
    Niu Y L. 1997. Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites. J Petrol, 38: 1047-1074
    Paulick H, Bach W, Godard M, et al. 2006. Geochemistry of abyssal peridotites (Mid-Atlantic Ridge, 15°20'N, ODP Leg 209): Implications for fluid/rock interaction in slow spreading environments. Chemical Geology, 267(3): 410-425
    Pickering-Witter J M, Johnston A D. 2000.The effects of variable mineral proportions on the melting systematic of fertile peridotite assemblages.Contrib Mineral Petrol, 140: 190-211
    Robinson C J,White R S, Bickle M J, et al. 1996. Restricted melting under the very slow spreading Southwest Indian Ridge. Tectonic, Magmatic, Hydrothermal and Biological Segmentation of Mid-Ocean Ridges, pp. 131-141
    Schwab B E, Johnston D A. 2001. Melting systematics of modally variable, compositionally intermediate peridotites and the effects of mineral fertility. J Petrol, 42: 1789-1811
    Seyler M, Bonatti E. 1997. Regional-scale melt-rock interaction in lherzolitic mantle in the Romanche Fracture Zone (Atlantic ocean). Earth Planet, 146: 273-287
    Seyler M, Cannat M, Mével C. 2003. Evidence for major-element heterogeneity in the mantle source of abyssal peridotites from the Southwest Indian Ridge (52° to 68°E). Geochemistry Geophysics Geosystems, 4(2): 1525-2027
    Seyler M, Lorand J P, Toplis M J, et al. 2004. Asthenosphericmetasomatism beneath the mid-ocean ridge: Evidence from depleted abyssal peridotites. Geology, 32: 301-304
    Torsvik T H, Amundsen H, Hartz E H, et al. 2013. A Precambrian microcontinent in the Indian Ocean. Nature Geoscience, NGEO1736
    Wang Jinrong, GuoYuansheng. 1999. Advance in study of abyssal peridotites (in Chinese). Advance in Earth Science, 14(6): 566-570
    Wells P R A. 1997. Pyroxene thermometry in simple and complex systems.Contrib Mineral Petrol, 62: 129-139
    Workman R K, Hart S R. 2005. Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231: 53-72
    XuYigang. 1993. Geothermometers applicable to the mantle xenoliths. ActaPetrologicaSinica (in Chinese), 9(3): 167-180
    Yu Xing, Chu Fengyou, Chen Hanlin, et al. 2011. Advances in research of abyssal peridotite serpent-tinization. Journal of Marine Sciences (in Chinese), 29(1): 96-103
    Zhou H Y, Dick H J B. 2013.Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature, 494: 195-201
    Zhu Yongfeng, XuXin. 2007. Exsolution texture of two-pyroxenes in lherzolite from Baijiantanophiolitic mélange, western Junggar, China. ActaPetrologicaSinica (in Chinese), 23(5): 1075-1086
  • 加载中
计量
  • 文章访问数:  1184
  • HTML全文浏览量:  35
  • PDF下载量:  1336
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-17
  • 修回日期:  2013-08-16

目录

    /

    返回文章
    返回