Component characteristics of organic matter in hydrothermal barnacle shells from Southwest Indian Ridge

HUANG Xin ZENG Zhigang CHEN Shuai YIN Xuebo WANG Xiaoyuan ZHAO Huijing YANG Baoju RONG Kunbo MA Yao

HUANGXin, ZENGZhigang, CHENShuai, YINXuebo, WANGXiaoyuan, ZHAOHuijing, YANGBaoju, RONGKunbo, MAYao. Component characteristics of organic matter in hydrothermal barnacle shells from Southwest Indian Ridge[J]. 海洋学报英文版, 2013, 32(12): 60-67. doi: 10.1007/s13131-013-0388-z
引用本文: HUANGXin, ZENGZhigang, CHENShuai, YINXuebo, WANGXiaoyuan, ZHAOHuijing, YANGBaoju, RONGKunbo, MAYao. Component characteristics of organic matter in hydrothermal barnacle shells from Southwest Indian Ridge[J]. 海洋学报英文版, 2013, 32(12): 60-67. doi: 10.1007/s13131-013-0388-z
HUANG Xin, ZENG Zhigang, CHEN Shuai, YIN Xuebo, WANG Xiaoyuan, ZHAO Huijing, YANG Baoju, RONG Kunbo, MA Yao. Component characteristics of organic matter in hydrothermal barnacle shells from Southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2013, 32(12): 60-67. doi: 10.1007/s13131-013-0388-z
Citation: HUANG Xin, ZENG Zhigang, CHEN Shuai, YIN Xuebo, WANG Xiaoyuan, ZHAO Huijing, YANG Baoju, RONG Kunbo, MA Yao. Component characteristics of organic matter in hydrothermal barnacle shells from Southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2013, 32(12): 60-67. doi: 10.1007/s13131-013-0388-z

Component characteristics of organic matter in hydrothermal barnacle shells from Southwest Indian Ridge

doi: 10.1007/s13131-013-0388-z
基金项目: The National Basic Research Program of China under contract No. 2012CB417305; China Ocean Mineral Resources R & D Association (COMRA) Project under contract No. DY125-11; Endowment Fund of International Seabed Authority (International Cooperative Study on Hydrothermal System at Ultraslow Spreading SWIR).

Component characteristics of organic matter in hydrothermal barnacle shells from Southwest Indian Ridge

  • 摘要: In 2008-2009, hydrothermal barnacle and sediment samples were collected from the Southwest Indian Ridge during a survey of the China Ocean Mineral Resources R&D Association (COMRA). Samples were analyzed by gas chromatography-mass spectrometer (GC-MS), revealing the main organic constituents of hydrothermal barnacle and sediment to be fatty acids and alkylbenzenes. N-alkanes which possessed obvious even carbon advantage were also detected in hydrothermal sediment. The high concentrations of aromatic compounds might be the result of macromolecular thermal alteration. Microorganism in the submarine hydrothermal ecosystem, especially those related to sulfur metabolism, might be the source of the high concentrations of fatty acids detected in these samples. In high temperature and high pressure hydrothermal environments, n-alkanes which possessed obvious even carbon advantage might originate from thermal alteration of carboxylic acids and other lipid compounds.
  • Bassez M P, Takano Y, Ohkouchi N. 2009. Organic analysis of peridotite rocks from the Ashadze and Logatchev hydrothermal sites. Int J MolSci, 10: 2986-2998
    Bouloubassi I, Aloisi G, Pancost R D, et al. 2006. Archaeal and bacterial lipids in authigenic carbonate crusts fromeastern Mediterranean mud volcanoes. Organic Geochemistry, 37: 484-500
    Brault M, Simoneit B R T. 1988. Mild hydrothermal alteration of immature organic-matter in sediments from the Bransfield Strait, Antarctica. Applied Geochemistry, 5: 149-158
    Charlou J L, Donval J P, Fouquet Y, et al. 2002. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14'N, MAR). Chemical Geology, 191: 345-359
    Charlou J L, Donval J P, Konn C, et al. 2010. High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. In Diversity of Hydrothermal Systems on Slow-spreading Ocean Ridges (eds Rona P, Devey C, Dyment J, Murton B). Geophysical monograph series 188. Washington D C: American Geophysical Union, 265-296
    Chernova T G, Rao P S, Pikovskii Yu I, et al. 2001.The composition and source of hydrocarbons in sediments taken from the tectonically active Andaman Backarch Basin, Indian Ocean. Mar Chem, 75: 1-15
    Colaco A, Prieto C, Martins A, et al. 2009. Seasonal variations in lipid composition of the hydrothermal vent mussel Bathymodiolusazoricus from the Menez Gwen vent field. Marine Environmental Research, 67: 146-152
    Dover V, Humphris S E, Fornari D, et al. 2001.Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science, 294: 818-823
    Elias V O, Simoneit B R T, Cardoso J N. 1997. Even n-alkane predominances on the Amazon shelf and a Northeast Pacific hydrothermal system.Naturwissenschaften, 84: 415-420
    Eremenko N A, Chilingar G. 1996. Geokhimiyanefti i gazanarubezhevekov (Petroleum Geochemistry at the Threshold of Centuries) (in Russian). Moscow: Nauka
    Farrington J W, Quinn J G, Davis W R. 1973. Fatty acid composition of Nephtysincisa and Yoldiaeimatula. Journal of the Fisheries Research Board of Canada, 30: 181-185
    Fouad B M, Jean C M, Aline F M. 1992. Fatty acid composition in deep hydrothermal vent symbiotic bivalves. Journal of Lipid Research, 33: 1797-1806
    Fujimoto H, Mevel C, fujioka K et al. 1999. First submersible investigations of mid-ocean ridges in the Indian Ocean. Inter Ridge News, 8: 22-24
    Gallant R M, Damm V K L. 2006. Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23-25°S, Central Indian Ridge. GeochemGeophysGeosys, 7: Q06018
    Gennadiev A N, Pikovsky Y I. 1996. Geochemistry of polycyclic aromatic hydrocarbons in rocks and soils (in Russian). Moscow: Moscow University Publishers, 192
    Geptner A R, ricter B, Pikovskii Y I, et al. 2006. Polycyclic aromatic hydrocarbons as evidence of hydrocarbon migration in marine and lagoon sediments of a recent rift zone (Skjálfandi and Öxarfjörður), Iceland.Chemie der Erde, 66: 213-225
    Gontharet S, Stadnitskaia A, Bouloubassi I, et al. 2009. Palaeomethane-seepage history traced by biomarker patterns in a carbonate crust, Nile deep-sea fan (Eastern Mediterranean Sea). Marine Geology, 261: 105-113
    Guerreiro V, Narciso L, Almeida A J, et al. 2004. Fatty acid profiles of deep-sea fishes from the Lucky Strike and Menez Gwen hydrothermal vent fields (Mid-Atlantic Ridge). Cybium, 28(1): 33-44
    Guezennec J, Fiala-Medioni A. 1996.Bacterial abundance and diversity in the Barbados Trench determined by phospholipids analysis. FEMS MicrobiolEcol, 19: 83-93
    Hunt J. 1996. Petroleum Geochemistry and Geology. New York: Freeman and Co, 743
    Joseph J D. 1982. Lipid composition of marine and estuarine invertebrates: Part II. Mollusca. Progress in Lipid Research, 21: 109-153
    Jungblut A D, Allen M A, Burns B P, et al. 2009. Lipid biomarker analysis of cyanobacteria-dominated microbial mats in melt water ponds on the McMurdo Ice Shelf, Antarctica. Organic Geochemistry, 40: 258-269
    Konn C, Charlou J L, Donval J P, et al. 2012. Characterisation of dissolved organic compounds in hydrothermal fluids by stir bar sorptive extraction-gas chromatography-mass spectrometry. Case study: the Rainbow field (36°N, Mid-Atlantic Ridge). Geochemical Transactions, 13: 8
    Konn C, Charlou J L, Donval J P, et al. 2009. Hydrocarbons and oxidized organic compounds in hydrothermal fluids from Rainbow and Lost City ultramafic-hosted vents. Chemical Geology, 258: 299-314
    Konn C, Testemale D, Querellou J, et al. 2011. New insight into the contributions of thermogenic processes and biogenic sources to the generation of organic compounds in hydrothermal fluids.Geobiology, 9: 79-93
    Konneke M, Widdel F. 2003. Effect of growth temperature on cellular fatty acids in sulphate-reducing bacteria. Environ Microbiol, 5: 1063-1070
    Kumagai H, Nakamura K, Morishita T, et al. 2008. Geological back-ground of the Kairei and Edmound hydrothermal vent fields along the Central Indian Ridge: Insights into the distinct chemistry between theia vent fluids. Geofluids, 8: 239-251
    Lein A Y, Peresypkin V I, Simoneit B R T. 2003. Origin of hydrocarbons in hydrothermal sulfide ores in the Mid-Atlantic Ridge. Lithology and Mineral Resources, 38(5): 383-393
    Li Jiwei, Zhou Huaiyang, PengXiaotong, et al. 2011. Abundance and distribution of fatty acids within the walls of an active deep-sea sulfide chimney. Journal of Sea Research, 65: 333-339
    Li Yiliang, Peacock A D, White D C, et al. 2007. Spatial patterns of bacterial signature biomarkers in marine sediments of the Gulf of Mexico. ChemGeol, 238: 168-179
    Macleod G, McKeown C, Hall A J, et al. 1994. Hydrothermal and oceanic pH conditions of possible relevance to the origin of life. Origins of Life and Evolution of Biospheres, 24: 19-41
    Madigan M, Martinko J. 2005. Brock Biology of Microorganisms. 11th ed. London: Prentice Hall
    McCaffrey M A, Farrington J W, Repeta D J. 1989. Geochemical implications of the lipid composition of Thioploca spp. from the Peru upwelling regions 15°S. Org Geochem, 14: 61-68
    McCollom T M, Seewald J S. 2007. Abiotic synthesis of organic compounds in deep-Sea Hydrothermal environments. Chem Rev, 107: 382-401
    McCollom T M, Seewald J S, Simoneit B R T. 2001. Reactivity of monocyclic aromatic compounds under hydrothermal conditions.GeochimicaetCosmochimicaActa, 65(3): 455-468
    McCollom T, Shock E L. 1997. Geochemical constraints on chemolithoautotr-ophic metabolism by microorganisms in seafloor hydrothermal systems.GeochimCosmochimActa, 61: 4375-4391
    Muller M R, Minshull T A, White R S. 1999. Segmentation and melt supply at the Southwest Indian Ridge. Geologe, 27(10): 867
    Munch U, Claude L, Peter H, et al. 2001. Relict hydrothermal events along the super-slow Southwest Indian spreading ridge near 63°56'E-mineralogy, chemistry and chronology of sulfide samples. Chemical Geology, 177(3-4): 341-349
    PengXiaotong, Li Jiwei, Zhou Huaiyang, et al. 2011. Characteristics and source of inorganic and organic compounds in the sediments from two hydrothermal fields of the Central Indian and Mid-Atlantic Ridges. Journal of Asian Earth Sciences, 41: 355-368
    Pond D W, Allen C E, Bell M V, et al. 2002.Origins of long-chain polyunsaturated fatty acids in the hydrothermal vent worms Ridgeapiscesae and Protishydrothermica. Marine Ecology Progress Series, 225: 219-226
    Pond D W, Dixon D R, Bell M V, et al. 1997. Occurrence of 16:2(n-4) and 18:2(n-4) fatty acids in the lipids of the hydrothermal vent shrimps Rimicarisexoculata and Alvinocarismarkensis: nutritional and trophic implications. Marine Ecology Progress Series, 156: 167-174
    Pond D W, Fallick A E, Stevens C J, et al. 2008. Vertebrate nutrition in a deep-sea hydrothermal vent ecosystem: Fatty acid and stable isotope evidence. Deep-Sea Research I, 55: 1718-1726
    Pond D W, Gebruk A, Southward E C, et al. 2000. Unusual fatty acid composition of storage lipids in the bresilioid shrimp Rimicarisexoculata couples the photic zone with MAR hydrothermal vent sites. Marine Ecology Progress Series, 198: 171-173
    Pranal V, Medioni A F, Guezennec J. 1996. Fatty acid characteristics in two symbiotic gastropods from a deep hydrothermal vent of the West Pacific. Marine Ecology Progress Series, 142: 175-184
    Pranal V, Medioni A F, Guezennec J. 1997. Fatty acid characteristics in two symbiont-bearing mussels from deep-sea hydrothermal vents of the south-western Pacific. Mar Boil Ass U K, 77: 473-492
    Saito H, Hashimoto J. 2010. Characteristics of the fatty acid composition of a deep-sea vent gastropod, ifremerianautilei. Lipids, 45: 537-548
    Saito H. 2011. Characteristics of Fatty Acid Composition of the Deep-Sea Vent Crab, Shinkaiacrosnieri Baba and Williams. Lipids, 46: 723-740
    Sargent J R, Bell M V, Bell J G, et al. 1995. Origins and functions of n-3 polyunsaturated fatty acids in marine organisms. In: Ceve G, Paltauf F, eds. Phospholipids Characterisation. Metabolism and Novel Biological Applications. Champaign IL: American Oil Society Press, 248-259
    Sargent J R. 1976. The structure, function, and metabolism of lipids in marine organisms. In: Malins D C, Sargent J R, eds. Biochemical and Biophysical Perspectives in Marine Biology, 3. New York: Academic Press, 149-212
    Schoell. 1983. Genetic characterisation of natural gases. AAPG Bull, 67: 2225-2238
    Shock E L. 1990. Geochemical constraints on the origin of organic compounds in hydrothermal systems. Origins of Life and Evolution of Biospheres, 20: 331-367
    Shulga N A, Peresypkin V I. 2012.New data on the composition of organic matter in the hydrothermal deposits of the Mid-Atlantic Ridge (Broken Spur, Snake Pit, TAG).Doklady Earth Sciences, 444 (2): 773-775
    Shulga N A, Peresypkin V I, Revelskii I A. 2010.Composition research of n-alkanes in the samples of hydrothermal deposits of the Mid-Atlantic Ridge by means of gas chromatography-mass spectrometry. Oceanology, 50(4): 479-487
    Simoneit B R T, Brault M, Saliot A. 1992a. Hydrocarbons associated with hydrothermal minerals, vent waters and talus on the East Pacific Rise and Mid-Atlantic Ridge. ApplGeochem, 5: 115-124
    Simoneit B R T, Kawka O E, Wang G M. 1992b. Biomarker maturation in contemporary hydrothermal system alteration of immature organic matter in zero geological time. In: Moldowan J M, Albrecht P, Philp R P, eds. Biological markers in sediments and petroleum: a tribute to Wolfgang K Seifert. Dallas,TX: Pentice Hall, Englewood Cliffs, 124-141
    Simoneit B R T, Lein A Y, Peresypkin V I, et al. 2004. Composition and origin of hydrothermal petroleum and associated lipids in the sulfide deposits of the Rainbow Field (Mid-Atlantic Ridge at 36°N).GeochimicaetCosmochimicaActa, 68: 10: 2275-2294
    Simoneit B R T, Sparow M A. 2002. Dissolved organic carbon in interstitial waters from sediments of Middle Valley and Escanaba Trough, Northeast Pacific, ODP Legs 139 and 169. Applied Geochemistry, 17: 1495-1502
    Simoneit B R T. 1985. Hydrothermal petroleum: genesis, migration and deposition in Guaymas Basin, Gulf of California. Can J Earth Sci, 22: 1919-1929
    Southward, Alan J. 1998. New observations on barnacles (Crustacea: Cirripedia) of the Azores region. ArquipelagoBoletim da Universidade dos Acores CienciasBiologicas e Marinhas, 16A: 11-27
    Takai T, Gamo U, Tsunogai et al. 2004. Geochemistry and microbiological evidence for a hydrogen-based, hyperthermophilic subsurface litho-autotrophic microbial ecosystem (HyperSLiME) beneath an active deep-sea hydrothermal field. Extremophiles, 8: 269-282
    Tissot B P, Welte D H. 1984. Petroleum Formation and Occurrence, 2nd ed. New York: Springer, 699
    Toshiro Y, Susumu S. 2004. Abundance and distribution of fatty acids in hydrothermal vent sediments of the western Pacific Ocean. Organic Geochemistry, 35: 573-582
    Venkatesan M I, Ruth E, Rao P S, et al. 2003. Hydrothermal petroleum in the sediments of the Andaman Backarc Basin, Indian Ocean. Applied Geochemistry, 18: 845-861
    ZengZhigang. 2011. Submarine Hydrothermal Geology (in Chinese). Beijing: Science Press, 140-144
    Zhang Chuanlun, Huang Zhiyong, Cantu J, et al. 2005. Lipid biomarkers and carbon isotope signatures of a microbial (Beggiatoa) mat associated with gas hydrates in the Gulf of Mexico. Appl Environ Microbiol, 71: 2106-2112
    Zhang Qiling, HouZengqian, Tang Shaohua. 2001. Organic composition of sulphideores in the Okinawa Trough and its implications. ActaGeologiaSinica, 75 (2): 196-203
  • 加载中
计量
  • 文章访问数:  1119
  • HTML全文浏览量:  31
  • PDF下载量:  2234
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-05-13
  • 修回日期:  2013-08-04

目录

    /

    返回文章
    返回