Effects of Stokes production on summer ocean shelf dynamics

ZHANG Xuefeng HAN Guijun WANG Xidong ZHANG Lianxin

ZHANGXuefeng, HANGuijun, WANGXidong, ZHANGLianxin. Effects of Stokes production on summer ocean shelf dynamics[J]. 海洋学报英文版, 2014, 33(1): 24-34. doi: 10.1007/s13131-014-0424-7
引用本文: ZHANGXuefeng, HANGuijun, WANGXidong, ZHANGLianxin. Effects of Stokes production on summer ocean shelf dynamics[J]. 海洋学报英文版, 2014, 33(1): 24-34. doi: 10.1007/s13131-014-0424-7
ZHANG Xuefeng, HAN Guijun, WANG Xidong, ZHANG Lianxin. Effects of Stokes production on summer ocean shelf dynamics[J]. Acta Oceanologica Sinica, 2014, 33(1): 24-34. doi: 10.1007/s13131-014-0424-7
Citation: ZHANG Xuefeng, HAN Guijun, WANG Xidong, ZHANG Lianxin. Effects of Stokes production on summer ocean shelf dynamics[J]. Acta Oceanologica Sinica, 2014, 33(1): 24-34. doi: 10.1007/s13131-014-0424-7

Effects of Stokes production on summer ocean shelf dynamics

doi: 10.1007/s13131-014-0424-7
基金项目: The National Basic Research Program of China under contract No. 2013CB430304; the National Natural Science Foundation of China under contract Nos 41030854, 41106005, 41176003 and 41206178; and the National Science and Technology Support Program of China under contract No. 2011BAC03B02-01.

Effects of Stokes production on summer ocean shelf dynamics

  • 摘要: A two-dimensional numerical model, which is configured on the basis of Princeton ocean model (POM), is used to study the effect of Stokes production (SP) of the turbulent kinetic energy on a density profile and Ekman transport in an idealized shelf region in summer. The energy input from SP is parameterized and included into the Mellor-Yamada turbulence closure sub model. Results reveal that the intensity of wind-driven upwelling fronts near the sea surface isweakened by the SP-associated turbulent kinetic energy input. The vertical eddy viscosity coefficient in the surface boundary layer is enhanced greatly owing to the impact of SP,which decreases the alongshore velocity and changes the distributionof upwelling. In addition, the SP-induced mixing easily suppresses the strong stratification and significantly increases the depth of the uppermixed layer (ML) under strong winds.
  • Agrawal Y C, Terray E A, Donelan M A, et al. 1992. Enhanced dissipationof kinetic energy beneath breaking waves. Nature, 359:219-220
    Allen J S, Newberger P A, Federiuk J. 1995. Upwelling circulation onthe Oregon continental shelf. Part Ⅰ: Response to idealized forcing.Journal of Physical Oceanography, 25: 1843-1866
    Allen J S,Newberger P A. 1996. Downwelling circulation on theOregoncontinental shelf. Part Ⅰ: Response to idealized forcing. Journalof Physical Oceanography, 26: 2011-2035
    Anis A,MoumJ N. 1992. The superadiabatic surface layer of the oceanduring convection. Journal of Physical Oceanography, 22: 1221-1227
    Austin J A, Lentz S J. 2002. The inner shelf response to wind-drivenupwelling and downwelling. Journal of Physical Oceanography,32: 2171-2193
    Blumberg A F, Mellor G L. 1987. A description of a three-dimensionalcoastal ocean circulation model, three-dimensional coastalocean models, Coastal Estuarine Sci, 4: 1-16
    Carniel S M, Sclavo M, Kantha L H, et al. 2005. Langmuir cells andmixing in the upper ocean. Nuovo Cimento Soc Ital Fis C, 28:33-54
    Craig P D, Banner M L. 1994. Modeling wave-enhanced turbulence inthe ocean surface layer. Journal of Physical Oceanography, 24:2546-2559
    Deng Z, Xie L, Han G, et al. 2012. The effect of Coriolis-Stokes forcingon upper ocean circulation in a two-way coupled wave-currentmodel. Chin J Oceanol Limnol, 30(2): 321-335
    Drennan W M, Donelan M A, Terray E A, et al. 1996. Oceanic turbulencedissipation measurements in SWADE. Journal of PhysicalOceanography, 26: 808-815
    Gnanadesikan A, Weller R A. 1995. Structure and instability of theEkman spiral in the presence of surface gravity waves. Journalof Physical Oceanography, 25(12): 3148-3171
    Hasselmann K. 1970. Wave-driven inertial oscillations. Geophysicaland Astrophysical Fluid Dynamics, 1(3-4): 463-502
    Huang N E. 1979. On surface drift currents in the ocean. Journal ofFluid Mechanics, 91(1): 191-208
    Kantha L H, Clayson C A. 1994. An improved mixed layer model forgeophysical applications. J Geophys Res, 99: 25235-25266
    Kantha L H, Clayson C A. 2004. On the effect of surface gravity waveson mixing in the oceanic mixed layer. Ocean modeling, 6: 101-124
    Kantha L H,Wittmann P, SclavoM, et al. 2009. A preliminary estimateof the stokes dissipation of wave energy in the global ocean.Geophys Res Lett, 36: L02605
    Kantha L H, Wittmann P, Sclavo M, et al. 2010. A note on Stokes productionof turbulence kinetic energy in the oceanicmixed layer:observations in the Baltic Sea. Ocean Dynamics, 60: 171-180
    Kitaigorodskii S A, Donelan M A, Lumley J L, et al. 1983. Wave turbulenceinteractions in the upper ocean: Part Ⅱ. Statistical characteristicsof wave and turbulent components of the randomvelocity field in the marine surface layer. Journal of PhysicalOceanography, 13: 1988-1999
    Li Shuang, Song Jinbao. 2012. The spacing of Langmuir circulationundermodest wind. Chin J Oceanol Limnol, 30(4): 690-696
    Li Shuang, Song Jinbao, Wang Fan. 2013. Effect of Langmuir circulationon upper ocean mixing in the South China Sea. ActaOceanol Sin, 32(3): 28-33
    Martin P J. 1985. Simulation of themixed layer at OWS November andPapa with severalmodels. J Geophys Res, 90: 903-916
    Mcwilliams J C, Restrepo J M. 1999. The wave-driven ocean circulation.Journal of Physical Oceanography, 29: 2523-2540
    Mellor G L, Yamada T. 1982. Development of a turbulence closuremodels for geophysical fluid problems. Rev Geophys, 20: 851-875
    Osborn T, Farmer D M, Vagle S, et al. 1992. Measurements of bubbleplums and turbulence from a submarine. Atmos-Ocean, 30:419-440
    Qiao Fang, Yuan Yeli, Yang Yongzeng, et al. 2004. Wave-induced mixingin the upper ocean: distribution and application to a globalocean circulationmodel. Geophys Res Lett, 31: L11303
    Sun Qun, Guan Changlong. 2007. Wave breaking on turbulent energybudget in the ocean surfacemixed layer. Chin JOceanol Limnol,26(1): 9-13
    Terray E A, Donelan M A, Agarwal Y, et al. 1996. Estimates of kineticenergy dissipation under breaking waves. Journal of PhysicalOceanography, 26: 972-987
    Thorpe S A. 1984. The effect of Langmuir Circulation on the distributionof submerged bubbles caused by breaking wind waves.Journal of Fluid Mechanics, 142: 151-170
    Zhang Xuefeng, Han Guijun,Wang Dongxiao, et al. 2011. Effect ofsurface wave breaking on the surface boundary layer of temperaturein the Yellow Sea in summer. Ocean Modelling, 38:267-279
    Zhang Xuefeng, Han Guijun, Wang Dongxiao, et al. 2012. Summersurface layer thermal response to surface gravity waves in theYellow Sea. Ocean Dynamics, 62: 983-1000
  • 加载中
计量
  • 文章访问数:  1088
  • HTML全文浏览量:  41
  • PDF下载量:  1562
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-02-08
  • 修回日期:  2013-05-22

目录

    /

    返回文章
    返回