Estimation of vertical diffusion coefficient based on a onedimensional temperature diffusion equation with an inverse method

LIANG Hui ZHAO Wei DAI Dejun ZHANG Jun

LIANGHui, ZHAOWei, DAIDejun, ZHANGJun. 基于一维扩散方程反演温度垂直扩散系数的变分方法[J]. 海洋学报英文版, 2014, 33(5): 28-36. doi: 10.1007/s13131-014-0472-z
引用本文: LIANGHui, ZHAOWei, DAIDejun, ZHANGJun. 基于一维扩散方程反演温度垂直扩散系数的变分方法[J]. 海洋学报英文版, 2014, 33(5): 28-36. doi: 10.1007/s13131-014-0472-z
LIANG Hui, ZHAO Wei, DAI Dejun, ZHANG Jun. Estimation of vertical diffusion coefficient based on a onedimensional temperature diffusion equation with an inverse method[J]. Acta Oceanologica Sinica, 2014, 33(5): 28-36. doi: 10.1007/s13131-014-0472-z
Citation: LIANG Hui, ZHAO Wei, DAI Dejun, ZHANG Jun. Estimation of vertical diffusion coefficient based on a onedimensional temperature diffusion equation with an inverse method[J]. Acta Oceanologica Sinica, 2014, 33(5): 28-36. doi: 10.1007/s13131-014-0472-z

基于一维扩散方程反演温度垂直扩散系数的变分方法

doi: 10.1007/s13131-014-0472-z
基金项目: The Program for New Century Excellent Talents in University of the Ministry of Education under contract No. NCET-10-0764; the National High Technology Research and Development Program of China (863 Program) under contract No. 2013AA09A502; the National Natural Science Foundation of China under contract Nos 40876015 and 41176010.

Estimation of vertical diffusion coefficient based on a onedimensional temperature diffusion equation with an inverse method

  • 摘要: 由于在大洋环流中的重要作用,海洋混合逐渐成为物理海洋学研究的热点之一。现场观测是认知海洋混合时空分布特征最有效的手段,然而目前针对湍动能耗散率的观测数据还很少,在该情况下,利用常规温盐资料反演垂向扩散系数不失为一个了解垂向混合的有效途径。本文基于垂向一维扩散方程,建立了反演垂向扩散系数的变分方法。这里我们采用半隐半显格式进行数值差分。为了检验该方法的可行性和对初始温度场、扩散系数初猜值、垂向分辨率等的敏感性,我们开展了理想实验。检验结果表明,本文中我们建立的反演模型对实际海洋数据中存在的观测误差以及扩散系数的初始猜值不敏感,在各种情况下都具有较高的可行性,是一种估算实际海洋中温度扩散系数的有效方法。随后,我们将此法用于Argo数据,以分析北太平洋中部垂向混合的时空分布特征。结果表明大洋上层的垂向混合表现出明显的季节变化且变化幅度随深度减弱;地形的粗糙度对大洋垂向混合有重要影响,粗糙区的垂向混合要强于平滑区的。但该方法基于一维温度扩散方程,仅适用于海流较弱的区域。因此对高质量、高分辨率数据的分析以及对反演算法的改进将加深我们对海洋混合过程的理解,是未来工作的方向。
  • Alford M H. 2001. Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer nearinertial motions. J Phys Oceanogr, 31: 2359-2368, doi: 10.1175/1520-0485(2001)031<2359:ISGTSD>2.0.CO;2
    Cisewski B, Strass V H, Prandke H. 2005. Upper-ocean vertical mixing in the Antarctic Polar Front Zone. Deep-Sea Res: Part II, 52: 1087-1108
    Dai Dejun, Qiao Fangli, Xia Changshui, et al. 2006. A numerical study on dynamic mechanisms of seasonal temperature variability in the Yellow Sea. J Geophys Res, 111: C11S05, doi: 10.1029/2005JC003253
    Decloedt T, Luther D S. 2010. On a simple empirical parameterization of topography-catalyzed diapycnal mixing in the abyssal ocean. J Phys Oceanogr, 40: 487-508
    Egbert G D, Ray R D. 2001. Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. J Geophys Res, 106: 22475-22502, doi: 10.1029/2000JC000699
    Finnigan T D, Luther D S, Lukas R. 2002. Observations of Enhanced Diapycnal Mixing near the Hawaiian Ridge. J Phys Oceanogr, 32: 2988-3002
    Ganachaud A, Wunsch C. 2000. Improved estimates of global ocean circulation, heat transport and mixing from hydrographic data. Nature, 408: 453-457
    Gill A E, Green J S A, Simmons A J. 1974. Energy partition in the largescale ocean circulation and the production of mid-ocean eddies. Deep-Sea Res, 21: 499-528
    Gregg M C. 1989. Scaling turbulent dissipation in the thermocline. J Geophys Res, 94: 9686-9698
    Gregg M C, Sanford T B, Winkel D P. 2003. Reduced mixing from the breaking of internal waves in equatorial waters. Nature, 422(6931): 513-515
    Hasumi H, Suginohara N. 1999. Effects of locally enhanced vertical diffusivity over rough bathymetry on the world ocean circulation. J Geophys Res, 104(C10): 23367-23374
    Jayne S R. 2009. The impact of abyssal mixing parameterization in an ocean general circulation model. J Phys Oceanogr, 39: 1756-1775
    Jing Zhao, Wu Lixin. 2010. Seasonal variation of turbulent diapycnal mixing in the northwestern Pacific stirred by wind stress. Geophys Res Lett, 37: L23604, doi: 10.1029/2010GL045418
    Kunze E, Firing E, Hummon J M, et al. 2006. Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles. J Phys Oceanogr, 36(8): 1553-1576
    Ledwell J R, Montgomery E T, Polzin K L, et al. 2000. Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature, 403(13): 179-182
    Ledwell J R, Watson A J, Law C S. 1993. Evidence for slow mixing across the pysnocline from an open ocean tracer release experiment. Nature, 364: 701-703
    Lumpkin R, Speer K. 2007. Global ocean meridional overturning. J Phys Oceanogr, 37: 2550-2562
    Munk W, Wunsch C. 1998. Abyssal recipes II: energetics of tidal and wind mixing. Deep-Sea Res, 45: 1977-2010
    Naveira Garabato A C, Polzin K L, King B A, et al. 2004. Widespread intense turbulent mixing in the Southern Ocean. Science, 303: 210-213
    Osborn T R. 1980. Estimates of the local-rate of vertical diffusion from dissipation measurements. J Phys Oceanogr, 10: 83-89
    Osborn T R, Cox C S. 1972. Oceanic fine structure. Geophysical Fluid Dynamics, 3: 321-345
    Polzin K L, Toole J M, Ledwell J R, et al. 1997. Spatial Variability of Turbulent Mixing in the Abyssal Ocean. Science, 276: 93-96
    Quay P D, Broecker W S, Hesslein R H, et al. 1980. Vertical diffusion rates determined by tritium tracer experiments in the thermocline and hypolimnion of two lakes. Limnol Oceanogr, 25(2): 201-218
    Rudnick D L, Boyd T J, Brainard R E, et al. 2003. From Tides to Mixing Along the Hawaiian Ridge. Science, 301: 355-357
    Saenko O A, Merryfield W J. 2005. On the effect of topographically enhanced mixing on the global ocean circulation. J Phys Oceanogr, 35: 826-834
    Simmons H L, Jayne S R, Laurent Louis C S, et al. 2004. Tidally driven mixing in a numerical model of the ocean general circulation. Ocean Modell, 6: 245-263
    Thompson A F, Gille S T, Mackinnon J A, et al. 2007. Spatial and temporal patterns of small-scale mixing in Drake Passage. J Phys Oceanogr, 37: 572-592
    Thorpe S A. 1977. Turbulence and mixing in a Scottish Loch. Philosophical Transactions of the Royal Society of London: Series A, 286: 125-181
    Wunsch C, Ferrari R. 2004. Vertical mixing, energy, and the general circulation of the oceans. Annual Review of Fluid Mechanics, 36: 281-314
  • 加载中
计量
  • 文章访问数:  1627
  • HTML全文浏览量:  57
  • PDF下载量:  1309
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-04-17
  • 修回日期:  2013-07-08

目录

    /

    返回文章
    返回