An improved wind speed algorithm for “Jason-1” altimeter under tropical cyclone conditions

QIN Bangyong ZHOU Xuan ZHANG Honglei YANG Xiaofeng LU Rong YU Yang SHI Lijian

QINBangyong, ZHOUXuan, ZHANGHonglei, YANGXiaofeng, LURong, YUYang, SHILijian. 台风条件下改进的Jason-1海面风速反演算法[J]. 海洋学报英文版, 2014, 33(7): 83-88. doi: 10.1007/s13131-014-0500-z
引用本文: QINBangyong, ZHOUXuan, ZHANGHonglei, YANGXiaofeng, LURong, YUYang, SHILijian. 台风条件下改进的Jason-1海面风速反演算法[J]. 海洋学报英文版, 2014, 33(7): 83-88. doi: 10.1007/s13131-014-0500-z
QIN Bangyong, ZHOU Xuan, ZHANG Honglei, YANG Xiaofeng, LU Rong, YU Yang, SHI Lijian. An improved wind speed algorithm for “Jason-1” altimeter under tropical cyclone conditions[J]. Acta Oceanologica Sinica, 2014, 33(7): 83-88. doi: 10.1007/s13131-014-0500-z
Citation: QIN Bangyong, ZHOU Xuan, ZHANG Honglei, YANG Xiaofeng, LU Rong, YU Yang, SHI Lijian. An improved wind speed algorithm for “Jason-1” altimeter under tropical cyclone conditions[J]. Acta Oceanologica Sinica, 2014, 33(7): 83-88. doi: 10.1007/s13131-014-0500-z

台风条件下改进的Jason-1海面风速反演算法

doi: 10.1007/s13131-014-0500-z
基金项目: The National Natural Science Foundation of China under Nos 41201350 and 41228007;the International Scientific and Technological Cooperation Projects of State Oceanic Adminstration under contact No. 2011DFA22260;the Knowledge Innovation Program of the Chinese Academy of Sciences under contact No. Y0S04300KB.

An improved wind speed algorithm for “Jason-1” altimeter under tropical cyclone conditions

  • 摘要: 台风条件下现场观测资料十分稀少,Young等人、Gu等人利用台风模式风速代替现场观测数据,通过与高度计观测的后向散射截面进行对比分析,建立高风速反演算法。但台风模式自身的缺陷,以及降雨的衰减、体后向散射和雨表面扰动作用,影响了这些算法的精度。HRD海面风速再分析数据融合了所有的现场观测数据,其精度明显优于台风模式风速数据。为了改进台风条件下海面风速反演算法的精度,本文首先利用CMORPH降雨数据和降雨订正模型对Jason-1后向散射截面进行降雨订正,并通过HRD海面风速再分析数据代替台风模式风速数据建立匹配数据集,推导高度计在无雨、高风速条件下海面风速反演算法;然后,利用无雨条件下C和Ku波段高度计后向散射截面的关系,给出了台风条件下海面风速反演的技术流程;最后,利用Irene飓风对本文算法进行了验证,试验结果表明,本文算法在C和Ku波段的均方根误差分别为1.99和2.75m/s,精度明显优于Gu算法和Jason-1业务化算法,且C波段比Ku波段更适合台风条件下海面风速的反演。
  • Brown G S, Stanley H R, Roy N A. 1981. The wind speed measurement capacity of space borne radar altimeter. IEEE Journal of Oceanic Engineering, 6(2): 59-63
    Chelton D B, McCabe P J. 1985. A review of satellite altimeter measurement of sea-surface wind-speed with a proposed new algorithm. Journal of Geophysical Research Oceans, 90(C3): 4707-4720
    Chelton D B, Wentz F J. 1986. Further development of an improved altimeter wind-speed algorithm. Journal of Geophysical Research Oceans, 91(C12): 14250-14260
    Cheng Yongcun, Xu Qing, Liu Yuguang, et al. 2008. An analytical algorithm with a wave age factor for altimeter wind speed retrieval, International Journal of Remote Sensing, 29(19): 5699-5716
    Gu Y Z, Liu Y G, Xu Q, et al. 2011. A new wind retrieval algorithm for “Jason-1” at high wind speeds. International Journal of Remote Sensing, 32(5): 1397-1407
    Gourrion J, Vandemark D, Bailey S, et al. 2002. A Two-Parameter Wind Speed Algorithm for Ku-Band Altimeters. Journal of Atmospheric and Oceanic Technology, 12(19): 2030-2048
    Fore A, Haddad Z S, Krishnamurti T N, et al. 2010. Improving scatterometry retrievals of wind in hurricanes using non-simultaneous passive microwave estimates of precipitation and a split-step advection/convection model. Pure Appl Geophys, doi: 10.1007/s00024-011-0378-z
    Holland G J. 1980. An analytic model of the wind and pressure profiles in hurricanes. Monthly Weather Review, 108(8): 1212-1218
    Joyce R J, Janowiak J E, Arkin P A, et al. 2004. CMORPH: a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. Journal of Hydrometeorology, 5(3): 487-503
    Lefevre J M, Barckicke J, Menard Y. 1994. A significant wave height dependent function for Topex/Poseidon wind-speed retrieval. Journal of Geophysical Research Oceans, 99(C12): 25035-25049
    Powell M D, Houston S H, Amat L R, et al. 1998. The HRD real-time hurricane wind analysis system. Journal of Wind Engineering and Industrial Aerodynamics, 77&78: 53-64
    Quilfen Y, Tournadre J, Chapron B. 2006. Altimeter dual-frequency observations of surface winds, waves, and rain rate in tropical cyclone Isabel. Journal of Geophysical Research Oceans, 111: C01004,doi: 10.1029/2005JC003068
    Witter D L, Chelton D B. 1991. A geosat altimeter wind-speed algorithm and a method for altimeter wind-speed algorithm development. Journal of Geophysical Research Oceans, 96(C5): 8853-8860
    Yang Le, Lin Mingsen, Zou Juhong, et al. 2008. Improving the wind and wave estimation of dual-frequency altimeter JASON1 in Typhoon Shanshan and considering the rain effects. Acta Oceanologica Sinica, 27(5): 49-62
    Yin Xiaobin, Wang Zhenzhan, Liu Yuguang, et al. 2007. Ocean response to typhoon ketsana traveling over the northwest Pacific and a numerical model approach. Geophysical Research Letters, 34(21), doi: 10.1029/2007GL031477.
    Young I R. 1993. An estimate of the geosat altimeter wind-speed algorithm at high wind speeds. Journal of Geophysical Research Oceans, 98(C11): 20275-20285
    Zhao Dongliang, Toba Y. 2003. A spectral approach for determining altimeter wind speed model functions. Journal of Oceanography, 59(2): 235-244
    Zhou Xuan, Yang Xiaofeng, Hao Yulong, et al. 2013. Evaluating and correcting rain effects on dual-frequency altimeter “Jason-1” wind measurements. Chinese Journal of Oceanology and Limnology, 31(4): 917-924
  • 加载中
计量
  • 文章访问数:  1897
  • HTML全文浏览量:  24
  • PDF下载量:  1327
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-04
  • 修回日期:  2013-09-06

目录

    /

    返回文章
    返回