The impact of surface waves on the mixing of the upper ocean

WANG Zhifeng WU Kejian XIA Changshui ZHANG Xiaoshuang

WANGZhifeng, WUKejian, XIAChangshui, ZHANGXiaoshuang. 表面波浪对海洋上层混合的作用[J]. 海洋学报英文版, 2014, 33(9): 32-39. doi: 10.1007/s13131-014-0514-6
引用本文: WANGZhifeng, WUKejian, XIAChangshui, ZHANGXiaoshuang. 表面波浪对海洋上层混合的作用[J]. 海洋学报英文版, 2014, 33(9): 32-39. doi: 10.1007/s13131-014-0514-6
WANG Zhifeng, WU Kejian, XIA Changshui, ZHANG Xiaoshuang. The impact of surface waves on the mixing of the upper ocean[J]. Acta Oceanologica Sinica, 2014, 33(9): 32-39. doi: 10.1007/s13131-014-0514-6
Citation: WANG Zhifeng, WU Kejian, XIA Changshui, ZHANG Xiaoshuang. The impact of surface waves on the mixing of the upper ocean[J]. Acta Oceanologica Sinica, 2014, 33(9): 32-39. doi: 10.1007/s13131-014-0514-6

表面波浪对海洋上层混合的作用

doi: 10.1007/s13131-014-0514-6
基金项目: The Open Fund of the Shandong Province Key Laboratory of Ocean Engineering, Ocean University of China (Fundamental Research Funds for the Central Universities) under contract No. 201362045; the Open Fund of the Key Laboratory of Digital Ocean, State Oceanic Administration of China under contract No. KLDO201406.

The impact of surface waves on the mixing of the upper ocean

  • 摘要: 本文对N-S方程进行波浪平均,得到一个新的三维数值模型。该模型同时考虑大尺度力“Coriolis-Stokes力”和小尺度力“Stokes-Vortex力”。将三维数值模型应用到海洋模式POM中,选取不同的参数进行理想数值实验。结果表明随着Langmuir数逐渐减小,垂向混合逐渐增强。波浪破碎和Stokes湍效应都能加强垂向混合,但波浪破碎的影响仅仅局限在表层很薄的一层,而Stokes湍效应可以影响到整个混合层。将模型应用于全球大洋,结果发现海洋上层垂向混合加强,垂向混合系数变大,以南极绕极流海域最为明显。研究表明表面波浪对海洋上层混合具有重要作用,进行海洋数值模拟时,需要考虑波浪诱导的混合效应。
  • Ardhuin F, Rascle N, Belibassakis K A. 2008. Explicit wave averaged primitive equations using a generalized Lagrangian mean. Ocean Modelling, 20: 35-60, doi:10.1016/j. ocemod. 2007. 07.001
    Bi Fan,Wu Kejian, Zhang Yuming. 2012. The effect of Stokes drift on Ekman transport in the open sea. Acta Oceanologica Sinica, 31(6): 12-18, doi: 10.1007/s13131-012-0249-1
    Blumberg A F, Mellor G L. 1987. A description of a three-dimensional coastal oceancirculation model, in three-dimensional coastal ocean models. Coastal and Estuarine Study, 4: 1-16
    Craig P D, Banner M L. 1994. Modeling wave-enhanced turbulence in the ocean surface layer. Journal of Physical Oceanography, 24(12): 2546-2559
    Craik A D. 1977. The generation of Langmuir circulation by an instability mechanism. Journal of Fluid Mechanics, 125: 37-52
    Craik A D, Leibovich S. 1976. A rational model for Langmuir circulations. Journal of Fluid Mechanics, 73(3): 401-426
    Hasselmann K. 1970. Wave-driven inertial oscillations. Geophysical Fluid Dynamics, 1(3/4): 463-502
    Holm D D. 1996. The ideal Craik-Leibovich equations. Physica D, 98(2-4): 415-441
    Jenkins A D. 1986. A theory for steady and variable wind-and waveinduced currents. Journal of Physical Oceanography, 16(8): 1370-1377
    Kantha L H, Clayson C A. 1994. An improved mixed layer model for geophysical applications. Journal of Geophysical Research, 99(C12): 25235-25266 Kantha L H, C A Clayson. 2004. On the effect of surface gravity waves on mixing in the oceanic mixed layer. Ocean Modelling, 6(2): 101-124 Lane E M, Restrepo J M, McWilliams J C. 2007. Wave-current interaction: a comparison of radiation-stress and vortex-force representations. Journal of Physical Oceanography, 37(5): 1122-1141
    Langmuir I. 1983. Surface motion of water induced by wind. Science, 87: 119-123
    Lewis D M, Belcher S E. 2004. Time-dependent, coupled, Ekman boundary layer solutions incorporating Stokes drift. Dynamics of Atmospheres and Oceans, 37(4): 313-351
    Li M, Garrett C, 1997. Mixed-layer deepening due to Langmuir circulation. Journal of Physical Oceanography, 27(1): 121-132
    Li M, Garrett C, Skyllingstad E. 2005. A regime diagram for classifying turbulent large eddies in the upper ocean. Deep Sea Research Part I, 52(2): 259-278
    Li Shuang, Song Jinbao, Fan Wei. 2013. Effect of Langmuir circulation on upper ocean mixing in the South China Sea. Acta Oceanologica Sinica, 32(3): 28-33, doi: 10.1007/s13131-013-0285-5
    Longuet-Higgins, Stewart R W,. 1960. Changes in the form of short gravity waves on long waves and tidal currents. Journal of Fluid Mechanics, 8: 565-583
    Longuet-Higgins, Stewart R W. 1961. The changes in amplitude of short gravity waves on steady non-uniform currents. Journal of Fluid Mechanics, 10: 529-549
    Mellor George, Blumberg Alan. 2004. Wave breaking and ocean surface layer thermal response. Journal of Physical Oceanography, 34(3): 693-698
    Mellor G L, Yamada T. 1974. A hierarchy of turbulence closure models for planetary boundary layers. Journal of the Atmospheric Sciences, 31(7): 1791-1806
    Mellor G L, Ymadaa T. 1982. Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics, 20(4): 851-875
    McWillianms J C. 1996. Modeling the oceanic general circulation. Annual Review of Fluid Mechanics, 28: 215-248
    McWilliams J C, Restrepo J M. 1999. The wave-driven ocean circulation. Journal of Physical Oceanography, 29(10): 2523-2540
    McWilliams J C, Sullivan P P. 2001. Vertical mixing by Langmuir circulations. Spill and Science Technology, 6(3-4): 225-238
    McWillianms J C, Sullivan P P, Moeng C H. 1997. Langmuir turbulence in the ocean. Journal of Fluid Mechanics, 334: 1-30
    McWilliams J C, Testrepo J M, Lane E M. 2004. An asymptotic theory for the ocean. Journal of Fluid Mechanics, 511: 135-178
    Newberger P A, Allen J S. 2007a. Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 1. Formulation. Journal of Geophysical Research, 112: C08018, doi: 10. 1029/2006JC003472
    Newberger P A, Allen J S. 2007b. Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 2. Application to DUCK94. Journal of Geophysical Research, 112: C08019. doi: 10.1029/2006JC003474
    Philips O M. 1977. The Dynamics of the Upper Ocean. Cambridge: Cambridge University Press, 336
    Polton J A, Belcher S E. 2007. Langmuir turbulence and deeply penetrating jets in an unstratified mixed layer. Journal of Geophysical Research, 112: C09020, doi: 10. 1029/2007JC004205
    Polton J A, Lewis D M, Belcher S E. 2005. The role of wave-induced Coriolis-Stokes forcing on the wind-driven mixed layer. Journal of Physical Oceanography, 35(4): 444-457
    Skyllingstad E D, Denbo D W. 1995. An ocean large-eddy simulation of Langmuir circulations and convection in the surface mixed layer. Journal of Geophysical Research, 100(C5): 8501-8522
    Smith J. 1998. Evolution of Langmuir circulation during a storm. Journal of Geophysical Research, 103(C6): 12649-12668
    Smith J A. 2006. Wave-current interactions in finite-depth. Journal of Physical Oceanography, 36(7): 1403-1419
    Smyth W D, Skyllingstad E D, Crawford G B, et al. 2002. Nonlocal fluxes and Stokes drift effects in the K-profile parameterization. Ocean Dynamics, 52(3), 105-115
    Sullivan P P, McWilliams J C. 2010. Dynamics of winds and currents coupled to surface waves. Annual Review of Fluid Mechanics, 42: 19-42
    Sullivan P P, McWilliams J C, Melville W K. 2007. Surface gravity wave effects in the oceanic boundary layer: large-eddy simulation with vortex force and stochastic breakers. Journal of Fluid Mechanics, 593: 405-452
    Stokes G G. 1984. On the theory of oscillatory waves. Trans Cambridge Philosophical Society, 8: 441-455
    Uchiyama Y, McWilliams J C. 2008. Infragravity waves in the deep ocean: generation, propagation, and seismic hum excitation. Journal of Geophysical Research, 113: C07029. doi:10.1029 /2007 JC 00 4562
    Uchiyama Y, McWilliams J C, Restrepo J M. 2009. Wave-current interaction in nearshore shear instability analyzed with a vortex-force formalism. Journal of Geophysical Research, 114: C06021, doi: 10.1029/2008JC005135
    Weber J E. 1983. Steady wind-and wave-induced currents in the open ocean. Journal of Physical Oceanography, 13(3): 524-530
    Weber J E. 2003. Wave-induced mass transport in the oceanic surface layer. Journal of Physical Oceanography, 33(12): 2527-2533
    Wessel P, Smith W H F. 1996. A global self-consistent hierarchical, high resolution shoreline database. Journal of Geophysical Research, 101(B4): 8741-8743
    Wu K J, Liu B. 2008. Stokes drift-induced and direct wind energy inputs into the Ekman layer within the Antarctic Circumpolar Current. Journal of Geophysical Research, 113: C10002, doi: 10. 1029/2007 JC00 4579
    Wu K J, Yang Z L, Liu B, et al. 2008. Wave energy input into the Ekman layer. Science in China Series D: Earth Sciences, 51(1): 134-141
  • 加载中
计量
  • 文章访问数:  1348
  • HTML全文浏览量:  43
  • PDF下载量:  1070
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-28
  • 修回日期:  2013-06-09

目录

    /

    返回文章
    返回