Bacterial diversity in sediments of core MD05-2902 from the Xisha Trough, the South China Sea

Li Tao Wang Peng

李涛, 王鹏. 南海西沙海槽沉积物柱MD05-2902细菌多样性[J]. 海洋学报英文版, 2014, 33(10): 85-93. doi: 10.1007/s13131-014-0543-1
引用本文: 李涛, 王鹏. 南海西沙海槽沉积物柱MD05-2902细菌多样性[J]. 海洋学报英文版, 2014, 33(10): 85-93. doi: 10.1007/s13131-014-0543-1
Li Tao, Wang Peng. Bacterial diversity in sediments of core MD05-2902 from the Xisha Trough, the South China Sea[J]. Acta Oceanologica Sinica, 2014, 33(10): 85-93. doi: 10.1007/s13131-014-0543-1
Citation: Li Tao, Wang Peng. Bacterial diversity in sediments of core MD05-2902 from the Xisha Trough, the South China Sea[J]. Acta Oceanologica Sinica, 2014, 33(10): 85-93. doi: 10.1007/s13131-014-0543-1

南海西沙海槽沉积物柱MD05-2902细菌多样性

doi: 10.1007/s13131-014-0543-1
基金项目: The Key Project of China National Programs for Fundamental Research and Development under contract No. 2007CB815904; the National Natural Science Foundation of China under contract No. 41276125; the South China Sea-Deep Program of the National Science Foundation of China under contract No. 91028005; the State Key Laboratory of Marine Geology, Tongji University under contract No. MGK 120202.

Bacterial diversity in sediments of core MD05-2902 from the Xisha Trough, the South China Sea

  • 摘要: 对采自西沙海槽深海盆地一沉积物柱MD05-2902中的细菌多样性和垂向分布特征进行研究。利用细菌16S rRNA基因对沉积物柱中的10个微生物样品(1m等间距采样)进行系统发育分析。16S rDNA系列分别来自18个细菌类群,以JS1、浮霉菌(Planctomycetes)和屈桡杆菌(Chloroflexi)为优势类群。这三个类群分别占全部序列的30.6%、16.6%和15.6%。使用多维尺度分析方法(nonmetric multidimensional scaling analysis)揭示微生物群落与环境因子之间的关系,结果表明δ15N、δ13C、总有机碳和总有机氮可能影响了细菌群落结构。该研究有助于了解西沙海槽沉积物中的生物地球化学循环。
  • Alain K, Holler T, Musat F, et al. 2006. Microbiological investigation of methane-and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania. Environ Microbiol, 8(4): 574-590
    Batzke A, Engelen B, Sass H, et al. 2007. Phylogenetic and physiological diversity of cultured deep-biosphere Bacteria from Equatorial Pacific Ocean and Peru Margin sediments. Geomicrobiol J, 24(3-4): 261-273
    Blazejak A, Schippers A. 2010. High abundance of JS-1-and Chloroflexi-related bacteria in deeply buried marine sediments revealed by quantitative, real-time PCR. FEMS Microbiol Ecol, 72(2): 198-207
    Boudreau B P. 1992. A kinetic model for microbic organic-matter decomposition in marine sediments. FEMS Microbiol Ecol, 102(1): 1-14
    Briggs B R, Inagaki F, Morono Y, et al. 2012. Bacterial dominance in subseafloor sediments characterized by methane hydrates. FEMS Microbiol Ecol, 81(1): 88-98
    Chao Anne, Shen Tsung-Jen. 2003. Program SPADE (Species Prediction and Diversity Estimation). http://chao.stat.nthu.edu.tw Clarke K R, Ainsworth M. 1993. A method of linking multivariate community structure to environmental variables. Mar Ecol Prog Ser, 92: 205-219
    D’Hondt S, Jørgensen B B, Miller D J, et al. 2004. Distributions of microbial activities in deep subseafloor sediments. Science, 306(5705): 2216-2221
    D’Hondt S, Inagaki F, Ferdelman T, et al. 2007. Exploring subseafloor life with the Integrated Ocean Drilling Program. Scientific Drilling, 5: 26-37
    DeLong E F. 1992. Archaea in coastal marine environments. Proc Natl Acad Sci USA, 89(12): 5685-5689
    Dhillon A, Teske A, Dillon J, et al. 2003. Molecular characterization of Sulfate-Reducing Bacteria in the Guaymas Basin. Appl Environ Microbiol, 69(5): 2765-2772
    Ena U, Vergin K L, Young L, et al. 2001. Unusual bacterioplankton community structure in ultra-oligotrophic Crater Lake. Limnol Oceanogr, 46(3): 557-572
    Forschner S R, Sheffer R, Rowley D C, et al. 2009. Microbial diversity in cenozoic sediments recovered from the Lomonosov Ridge in the Central Arctic Basin. Environ Microbiol, 11(3): 630-639
    Freitag T E, Prosser J I. 2003. Community structure of ammonia-oxidizing bacteria within anoxic marine sediments. Appl Environ Microbiol, 69(3): 1359-1371
    Fry J C, Parkes R J, Cragg B A, et al. 2008. Prokaryotic biodiversityand activity in the deep subseafoor biosphere. FEMS Microbiol Ecol, 66(2): 181-196
    He Lijuan, Wang Jiyang, Xu Xing, et al. 2009. Disparity between measured and BSR heat flow in the Xisha Trough of the South China Sea and its implications for the methane hydrate. J Asian Earth Sci, 34(6): 771-780
    Heijs S K, Haese R R, Wielen P W J J, et al. 2007. Use of 16S rRNA gene based clone libraries to assess microbial communities potentially involved in anaerobic methane oxidation in a Mediterranean Cold Seep. Microb Ecol, 53(6): 384-398
    Hugenholt P, Stackebrand E. 2004. Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). Int J Syst Evol Micr, 54(6): 2049-2051
    Hugenholtz P, Pitulle C, Hershberger K L, et al. 1998. Novel division level bacterial diversity in a Yellowstone Hot Spring. J Bacteriol, 180(2): 366-376
    Inagaki F, Nunoura T, Nakagawa S, et al. 2006. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proc Natl Acad Sci USA, 103(8): 2815-2820
    Inagaki F, Suzuki M, Takai K, et al. 2003. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol, 69(12): 7224-7235
    Jorgensen S L, Hannisdal B, Lanzén A, et al. 2012. Correlating microbial community profiles with geochemical data in highly stratified sediments from the Arctic Mid-Ocean Ridge. Proc Natl Acad Sci USA, 109(42): E2846-E2855
    Kallmeyer J, Pockalny R, Adhikari R R, et al. 2012. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci USA, 109(40): 16213-16216
    Kartal B, Rattray J, van Niftrik L A, et al. 2007. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst Appl Microbiol, 30: 39-49
    Kormas K A, Smith D C, Edgcomb V, et al. 2003. Molecular analysis of deep subsurface microbial communities in Nankai Trough sediments (ODP Leg 190, Site 1176). FEMS Microbiol Ecol, 45(2): 115-125
    Lehmann M F, Bernasconi S M, Barbieri A, et al. 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim Cosmochim Acta, 66(20): 3573-3584
    Leventhal J S. 2004. Isotopic chemistry of organic carbon in sediments from Leg 184. In: Prell W L, Wang P X, Blum P, et al., eds. Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX (Ocean Drilling Program), 184, 1-13, doi:10.2973/ odp.proc.sr.184.215.2004
    Li Lina, Kato C, Horikoshi K. 1999. Microbial diversity in sediments collected from the deepest cold-seep Area, the Japan Trench. Mar Biotechnol, 1(4): 391-400
    Li Tao, Wang Peng, Wang Pinxian. 2008a. Bacterial and archaeal diversity in surface sediment from the south slope of the South China Sea. Acta Microbiologica Sinica (in Chinese), 48(3): 323-329
    Li Tao, Wang Peng, Wang Pinxian. 2008b. Microbial diversity in surface sediments of the Xisha Trough, the South China Sea. Acta Ecologica Sinica (in Chinese), 28(3): 1166-1173
    Lloyd K G, Lapham L, Teske A. 2006. An anaerobic methane-oxidizing community of ANME-1b Archaea in hypersaline gulf of Mexico sediments. Appl Environ Microbiol, 72(11): 7218-7230
    López-García P, Duperron S, Philippot P, et al. 2003. Bacterial diversity in hydrothermal sediment and epsilonProteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ Microbiol, 5(10): 961-971
    Lösekann T, Knittel K, Nadalig T, et al. 2007. Diversity and abundance of aerobic and anaerobic methane oxidizers at the Haakon Mosby Mud Volcano, Barents Sea. Appl Environ Microbiol, 73(10): 3348-3362
    Maidak B L, Cole J R, Lilburn T G, et al. 2001. The RDP-II (Ribosomal Database Project). Nucleic Acids Res, 29(3): 173-174
    Marchesi J R, Weightman A J, Cragg B A, et al. 2001. Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia Margin as revealed by 16S rRNA molecular analysis. FEMS Microbiol Ecol, 34(3): 221-228
    Maymó-Gatell X, Chien Y-t, Gossett J M, et al. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science, 276(5318): 1568-1571
    Neef A, Amann R, Schlesner H, et al. 1998. Monitoring a widespread bacterial group: in situ detection of Planctomycetes with 16S
  • 加载中
计量
  • 文章访问数:  1411
  • HTML全文浏览量:  59
  • PDF下载量:  1486
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-06-06
  • 修回日期:  2013-10-01

目录

    /

    返回文章
    返回