An impact assessment of sea ice on ocean optics observations in the marginal ice zone of the Arctic

LI Tao ZHAO Jinping

LITao, ZHAOJinping. 海冰对北极海冰边缘区大洋光学观测的影响评估[J]. 海洋学报英文版, 2014, 33(12): 24-31. doi: 10.1007/s13131-014-0551-1
引用本文: LITao, ZHAOJinping. 海冰对北极海冰边缘区大洋光学观测的影响评估[J]. 海洋学报英文版, 2014, 33(12): 24-31. doi: 10.1007/s13131-014-0551-1
LI Tao, ZHAO Jinping. An impact assessment of sea ice on ocean optics observations in the marginal ice zone of the Arctic[J]. Acta Oceanologica Sinica, 2014, 33(12): 24-31. doi: 10.1007/s13131-014-0551-1
Citation: LI Tao, ZHAO Jinping. An impact assessment of sea ice on ocean optics observations in the marginal ice zone of the Arctic[J]. Acta Oceanologica Sinica, 2014, 33(12): 24-31. doi: 10.1007/s13131-014-0551-1

海冰对北极海冰边缘区大洋光学观测的影响评估

doi: 10.1007/s13131-014-0551-1
基金项目: The National Natural Science Foundation of China under contract No. 41206174; China Postdoctoral Science Foundation under contract No. 2012M511546; the Chinese Polar Scinece Strategy Fund under contract No. 20110204.

An impact assessment of sea ice on ocean optics observations in the marginal ice zone of the Arctic

  • 摘要: 海水的漫射衰减系数反映了其对太阳辐射的吸收能力,是海洋热学和生物学的重要参数.然而,在北冰洋,海冰覆盖对大洋光学观测产生一定的影响,导致计算而来的漫射衰减系数存在误差.为了更好的理解海冰对大洋光学观测的影响,作者于2009年夏季在波弗特海南部进行了一系列评估试验.结果显示,当太阳天顶角为55°,相对方位角为110-115°,传感器与冰边缘的水平距离为25m时,大洋表层50m之内的光学观测不会受到海冰的影响.依据几何光学理论,在晴空条件下,当传感器与冰边缘距离一定时,可以通过调整仪器相对于太阳的方位角来避免海冰的影响.阴天条件下,传感器距离海冰边缘25米时,表层50m之内的光学观测不会受到海冰的影响.如果海冰密集度较高,无法达到上述要求,可以将传感器完全浸没在海冰之下,也能获得较为可靠的海水漫射衰减系数.
  • Deser C, Teng H Y. 2008. Evolution of Arctic sea ice concentration trends and the role of atmospheric circulation forcing, 1979-2007. Geophysical Research Letters, 35(2): L02504, doi: 10.1029/2007GL032023
    Gordon H R. 1985. Ship perturbation of irradiance measurements at sea. 1: Monte Carlo simulations. Applied Optics, 24(23): 4172- 4182
    Gordon H R, Ding K Y. 1992. Self-shading of in-water optical instruments. Limnol Oceanogr, 118: 491-500
    Haas C, Nicolaus M, Willmes S, et al. 2008. Sea ice and snow thickness and physical properties of an ice floe in the western Weddell Sea and their changes during spring warming. Deep Sea Research: Part II, 55(8-9): 963-974
    Helliwell W S, Sullivan G N, Macdonald B, et al. 1990. Ship shadowing: model and data comparisons. In: Ocean Optics X Proceedings Orlando: SPIE, 55-71
    Kwok R, Cunningham G F, Wensnahan M, et al. 2009. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003-2008.
    Journal of Geophysical Research, 114(C7): C07005, doi: 10.1029/2009JC005312
    Kwok R, Rothrock D A. 2009. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958-2008. Geophys Res Lett, 36(15): L15501, doi: 10.1029/2009GL039035
    Liou K N. 2002. An Introduction to Atmospheric Radiation. San Diego: Academic Press, 1210 Mobley C D. 1994. Light and Water: Radiative Transfer in Natural Waters. San Diego: Academic Press, 36-37
    Mueller J L, Fargion G S, McClain C R, et al. 2002. Ocean Optics Protocols for Satellite Ocean Color Sensor Validation. Revision 4. Maryland: NASA, 13 Smith R C, Baker K S. 1984. The Analysis of Ocean Optical Data I, In: Ocean Optics VII Proceedings. Orlando: SPIE, 119-126
    Smith R C, Baker K S. 1986. Analysis of Ocean Optical Data II. In: Ocean Optics VIII Proceedings. Orlando: SPIE, 95-107
    Voss K J, Nolten J W, Edwards G D. 1986. Ship shadow effects on apparent optical properties. In: Ocean Optics VIII Proceedings. Orlando: SPIE, 186-190
    Waters K J, Smith R C, Lewis M R. 1990. Avoiding ship-induced lightfield perturbation in the determination of oceanic optical properties. Oceanography, 3(2): 18-21
    Weir C T, Siegel D A, Michaels A F, et al. 1994. In situ evaluation of a ship's shadow. In: Ocean Optics XII Proceedings. Orlando: SPIE, 815-821
    Zibordi G, Ferrari G M. 1995. Instrument self-shading in underwater optical measurements: experimental data. Applied Optics, 34(15): 2750-2754
  • 加载中
计量
  • 文章访问数:  1163
  • HTML全文浏览量:  49
  • PDF下载量:  1294
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-18
  • 修回日期:  2014-06-03

目录

    /

    返回文章
    返回