The El Niño-Southern Oscillation cycle simulated by the climate system model of Chinese Academy of Sciences

SU Tonghua XUE Feng SUN Hongchuan ZHOU Guangqing

苏同华, 薛峰, 孙泓川, 周广庆. 中国科学院气候系统模式模拟的ENSO循环[J]. 海洋学报英文版, 2015, 34(1): 55-65. doi: 10.1007/s13131-015-0596-9
引用本文: 苏同华, 薛峰, 孙泓川, 周广庆. 中国科学院气候系统模式模拟的ENSO循环[J]. 海洋学报英文版, 2015, 34(1): 55-65. doi: 10.1007/s13131-015-0596-9
SU Tonghua, XUE Feng, SUN Hongchuan, ZHOU Guangqing. The El Niño-Southern Oscillation cycle simulated by the climate system model of Chinese Academy of Sciences[J]. Acta Oceanologica Sinica, 2015, 34(1): 55-65. doi: 10.1007/s13131-015-0596-9
Citation: SU Tonghua, XUE Feng, SUN Hongchuan, ZHOU Guangqing. The El Niño-Southern Oscillation cycle simulated by the climate system model of Chinese Academy of Sciences[J]. Acta Oceanologica Sinica, 2015, 34(1): 55-65. doi: 10.1007/s13131-015-0596-9

中国科学院气候系统模式模拟的ENSO循环

doi: 10.1007/s13131-015-0596-9
基金项目: The Strategic Priority Research Program of Chinese Academy of Sciences under contract No. XdA05110201; the National Basic Research Program (973 Program) of China under contract No. 2010CB951901.

The El Niño-Southern Oscillation cycle simulated by the climate system model of Chinese Academy of Sciences

  • 摘要: 基于中国科学院气候系统模式200年的模拟结果, 评估了该模式对ENSO循环的模拟能力, 包括ENSO的发生、发展和衰减过程. 结果表明, 模式能模拟出热带太平洋海表温度的季节和年际变化以及ENSO的季节锁相. 此外, 模式还抓住了El Niño爆发的两个先决条件, 即赤道西太平洋的西风异常和偏暖的海表温度. 由于外热带经向风强迫偏强, 模式中西风异常偏强, 加之模式中温跃层偏浅、倾斜程度偏弱, 西太平洋暖海表温度异常东传速度偏快, 导致El Niño发展偏快. 在衰减阶段, 由于模式中El Niño偏强, 热带大气对东太平洋变暖的二次Gill型响应也偏强, 导致西太平洋出现持续的东风异常. 与此同时, Ekman抽吸抬升了西太平洋的温跃层, 暖池出现冷异常, 二者共同作用导致了El Niño衰减为La Niña. 模式中ENSO周期偏短、振幅偏大, 这与赤道太平洋温跃层偏浅有关, 温跃层偏浅将导致上层海洋中热量的再分配加速完成.
  • AchutaRao K, Sperber K R. 2006. ENSO simulation in coupled ocean atmosphere models: are the current models better? Climate dyn, 27(1): 1-15
    An S I, Jin F F. 2004. Nonlinearity and asymmetry of ENSO. J Climate, 17(12): 2399-2412
    Bellenger H, Guilyardi E, Leloup J, et al. 2014. ENSO representation in climate models: from CMIP3 to CMIP5. Climate dyn, 42(7-8): 1999-2018
    Bjerknes J. 1969. Atmospheric teleconnections from the equatorial Pacific. Mon Wea Rev, 97(3): 163-172
    Briegleb B P, Bitz C M, Hunke E C, et al. 2004. Scientific description of the sea ice component in the community climate system model, version three. NCAR Technical Note NCAR/TN-463+STR, Colorado: National Center for Atmospheric Research, doi: 10.5065/d6HH6H1P.
    Carton J A, Chepurin G, Cao X, et al. 2000. A simple ocean data assimilation analysis of the global upper ocean 1950-1995, Part 1: methodology. J Phys Oceanogr, 30(2): 294-309
    dickinson R E, Oleson K W, Bonan G, et al. 2006. The community land model and its climate statistics as a component of the community climate system model. J Climate, 19(11): 2302-2324
    Fedorov A V, Philander S G. 2001. A stability analysis of tropical ocean-atmosphere interactions: Bridging measurements and theory for El Niño. J Climate, 14(14): 3086-3101
    Guilyardi E. 2006. El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Climate dyn, 26(4): 329-348
    Guilyardi E, Wittenberg A, Fedorov A, et al. 2009. Understanding El Niño in ocean-atmosphere general circulation models: progress and challenges. Bull Amer Meteor Soc, 90(3): 325-340
    Ingleby B, Huddleston M. 2007. Quality control of ocean temperature and salinity profiles-Historical and real-time data. J Marine Syst, 65(1-4): 158-175
    Jin F F. 1997. An equatorial ocean recharge paradigm for ENSO. Part I: Conceptual model. J Atmos Sci, 54(7): 811-829
    Kanamitsu M, Ebisuzaki W, Woollen J, et al. 2002. NCEP-dOE AMIP-II reanalysis (R-2). Bull Amer Meteor Soc, 83(11): 1631-1643
    Larkin N K, Harrison d E. 2002. ENSO warm (El Niño) and cold (La Niña) event life cycles: Ocean surface anomaly patterns, their symmetries, asymmetries, and implications. J Climate, 15(10): 1118-1140
    Latif M, Sperber K, Arblaster J, et al. 2001. ENSIP: the El Niño simulation intercomparison project. Climate dyn, 18(3-4): 255-276
    Leloup J, Lengaigne M, Boulanger J P. 2008. Twentieth century ENSO characteristics in the IPCC database. Climate dyn, 30(2-3): 277-291
    Li Chongyin, Mu Mingquan. 1999. El Niño occurrence and sub-surface ocean temperature anomalies in the Pacific warm pool. Chinese Journal of Atmospheric Sciences (in Chinese), 23(5): 513-521
    Liebmann B, Smith C A. 1996. description of a complete (interpolated) outgoing longwave radiation dataset. Bull Amer Meteor Soc, 77: 1275-1277
    Liu Changzheng, Xue Feng. 2008. The persistent maintenance of the strong westerly anomalies over the equatorial western Pacific during the onset and development of ENSO. Climatic and Environmental Research (in Chinese), 13(2): 161-170
    Liu Changzheng, Xue Feng. 2010a. The decay of El Niño with different intensity. Part I, The decay of the strong El Niño. Chinese Journal of Geophysics, 53(1): 14-25
    Liu Changzheng, Xue Feng. 2010b. The decay of El Niño with different intensity. Part II, The decay of the moderate and relatively-weak El Niño. Chinese Journal of Geophysics, 53(6): 915-925
    Liu Changzheng, Xue Feng. 2012. The abortion of El Niño event in 1993 and its comparison with the typical El Niño event. Climatic and Environmental Research (in Chinese), 17(2): 197-204
    Liu Hailong, Yu Yongqiang, Li Wei, et al. 2004. Manual for LASG/IAP Climate System Ocean Model (LICOM1.0) (in Chinese). Beijing: Science Press, 107
    Philander S G H. 1983. El Niño and Southern Oscillation phenomena. Nature, 302(5906): 295-301
    Philander S G H. 1985. El Niño and La Niña. J Atmos Sci, 42(23): 2652-2662
    Philander S G H, Fedorov A. 2003. Is El Nino sporadic or cyclic? Annu Rev Earth Planet Sci, 31: 579-594
    Picaut J, Masia F, du Penhoat Y. 1997. An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 277(5326): 663-666
    Rasmusson E M, Carpenter T H. 1982. Variations in tropical sea surface temperature and surface wind fields associated with the southern oscillation/El Niño. Mon Wea Rev, 110(5): 354-384
    Rayner N A, Parker d E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res, 108(d14): doi: 10.1029/2002Jd002670
    Suarez M J, Schopf P S. 1988. A delayed action oscillator for ENSO. J Atmos Sci, 45(21): 3283-3287
    Sun Hongchuan, Zhou Guangqing, Zeng Qingcun. 2012. Assessments of the climate system model (CAS-ESM-C) using IAP AGCM4 as its atmospheric component. Chinese Journal of Atmospheric Sciences (in Chinese), 36(2): 215-233
    Trenberth K E. 1997. The definition of El Niño. Bull Amer Meteor Soc, 78(12): 2771-2777
    Weisberg R H, Wang Chunzai. 1997. A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys Res Lett, 24(7): 779-782
    Wu Bo, Li Tim, Zhou Tianjun. 2010. Asymmetry of atmospheric circulation anomalies over the western north Pacific between El Niño and La Niña. J Climate, 23(18): 4807-4822
    Wyrtki K. 1975. El Niño-The dynamic response of the Equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr, 5(4): 572-584
    Xue Feng, He Juanxiong. 2007. The influence of the extratropical atmospheric disturbances on ENSO. Chinese Journal of Geophysics, 50(5): 1130-1138
    Xue Feng, Liu Changzheng. 2008. The influence of moderate ENSO on summer rainfall in eastern China and its comparison with strong ENSO. Chinese Science Bulletin, 53 (5): 791-800
    Yu J Y, Kim S T. 2010. Identification of central-Pacific and eastern-Pacific types of ENSO in CMIP3 models. Geophys Res Lett, L15705, doi: 10.1029/2010GL044082
    Zebiak S E, Cane M A. 1987. A model El Niño-Southern Oscillation. Mon Wea Rev, 115(10): 2262-2278
    Zhang He. 2009. development of IAP atmospheric general circulation model version 4.0 and its climate simulations [dissertation]. Beijing: University of Chinese Academy of Sciences, 194
    Zhou Guangqing, Li Chongyin. 1999. Simulation on the relation between the subsurface temperature anomaly in western Pacific and ENSO by using CGCM. Climatic and Environmental Research (in Chinese), 4(4): 346-352
    Zhou Guangqing, Zeng Qingcun, Zhang Ronghua. 1999. An improved air-sea coupled model and its numerical simulation. Progress in Natural Science (in Chinese), 9(6): 542-551
  • 加载中
计量
  • 文章访问数:  1445
  • HTML全文浏览量:  40
  • PDF下载量:  1751
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-07
  • 修回日期:  2014-09-10

目录

    /

    返回文章
    返回