Wave effects on the retrieved wind field from the advanced scatterometer (ASCAT)

REN Lin YANG Jingsong ZHENG Gang WANG Juan CHEN Peng

RENLin, YANGJingsong, ZHENGGang, WANGJuan, CHENPeng. 海浪对ASCAT散射计反演风场的影响研究[J]. 海洋学报英文版, 2015, 34(1): 79-84. doi: 10.1007/s13131-015-0600-4
引用本文: RENLin, YANGJingsong, ZHENGGang, WANGJuan, CHENPeng. 海浪对ASCAT散射计反演风场的影响研究[J]. 海洋学报英文版, 2015, 34(1): 79-84. doi: 10.1007/s13131-015-0600-4
REN Lin, YANG Jingsong, ZHENG Gang, WANG Juan, CHEN Peng. Wave effects on the retrieved wind field from the advanced scatterometer (ASCAT)[J]. Acta Oceanologica Sinica, 2015, 34(1): 79-84. doi: 10.1007/s13131-015-0600-4
Citation: REN Lin, YANG Jingsong, ZHENG Gang, WANG Juan, CHEN Peng. Wave effects on the retrieved wind field from the advanced scatterometer (ASCAT)[J]. Acta Oceanologica Sinica, 2015, 34(1): 79-84. doi: 10.1007/s13131-015-0600-4

海浪对ASCAT散射计反演风场的影响研究

doi: 10.1007/s13131-015-0600-4
基金项目: The National Natural Science Youth Foundation of China under contract Nos 41306191 and 41306192; the National High Technology development Program (863 Program) of China under contract No. 2013AA09A505; the Scientific Research Fund of the Second Institute of Oceanography, State Oceanic Administration of China under contract No. JG1317.

Wave effects on the retrieved wind field from the advanced scatterometer (ASCAT)

  • 摘要: 为改善反演效果, 本文研究海浪对散射计风场反演精度的影响. 首先, 收集同步的ASCAT散射计数据和NdBC浮标数据, 并将浮标风速统一转换成海面10 m高度风速. 其次, 比较ASCAT和浮标的风速和风向. 再次, 利用 ASCAT和浮标风速、风向的误差建立的与各种海浪参数的函数关系, 来分析海浪对风场反演的影响. 涉及的海浪参数包括主波波长(dpd)、有效波高(swh)、平均波长(apd)以及主波波向和风向的夹角(angle). 关于误差的计算, 先将各种海浪参数分为多个数值区间, 再对照各区间将同步数据划分为多个子数据集, 进而通过计算各子数据集的均方根误差(RMSE)或平均绝对误差(MAE), 建立起误差同各海浪参数的函数关系. 最后, 基于误差分析方法确定ASCAT风场反演的最佳海浪条件. 研究结果表明, 海浪参数与反演风速的RMSE以及反演风向的MAE均存在一定的相关关系. 同时, 最佳海浪条件以dpd, swh, apd和angle的形式提出.
  • Essen H H. 1999. Biases in wind-retrieval by empirical ERS-1/2 scatterometer models due to the presence of long ocean wave. In: Stein Tammy I, ed. IGARSS'99 Proceedings, Vol. 3. Piscataway, USA: Institute of Electrical and Electronics Engineers, 1637-1639
    Graber H C, Ebuchi N, Vakkayil R. 1996. Evaluation of ERS-1 scatterometer wind with ocean buoy observations. In: Brancart Claude P, Clark Andrew M, eds. Oceans'96 MTS/IEEE Proceedings, Vol. 3. Piscataway, NJ, USA: Institute of Electrical and Electronics Engineers, 1157-1165
    Guo Jie, He Yijun. 2012. Wave steepness retrieved from scatterometer data in a genetic algorithm. Chinese Journal of Oceanology and Limnology, 30(2): 336-341
    Guo Jie, He Yijun, Chu Xiaoqing, et al. 2009. Wave parameters retrieved from QuikSCAT data. Canadian Journal of Remote Sensing, 35(4): 345-351
    Guo Jie, He Yijun, Perrie W, et al. 2009. Significant wave heights estimated from ERS-1/2 scatterometer data. Chinese Journal of Oceanology and Limnology, 27(1): 112-116
    Hasselmann K, Hasselmann K. 1991. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its retrieval. Journal of Geophysical Research, 96(C6): 10713-10729
    Hersbach H. 2010. Comparison of C-band scatterometer CMOd5.N equivalent neutral wind with ECMWF. Journal of Atmospheric and Oceanic Technology, 27(4): 721-736
    Hersbach H, Stoffelen A, Haan S d. 2007. An improved C-band scatterometer ocean geophysical model function: CMOd5. Journal of Geophysical Research, 112(C3): C03006, doi: 10.1029/2006JC003743
    Kasilingam d, Lin I I, Khoo V, et al. 1997. A study of the effect of swell in scatterometer wind measurements using ERS SAR wave mode data. In: Stein Tammy I, ed. IGARSS'97 Proceedings, Vol. 4. Piscataway, USA: Institute of Electrical and Electronics Engineers, 1512-1514
    Kasilingam d, Shemdin O. 1992. The validity of the composite surface model and its application to the modulation of radar backscatter. International Journal of Remote Sensing, 13(11): 2079-2104
    Makin V K, Kudryavtsev V N, Mastenbroek C. 1995. drag of the sea surface. Boundary-Layer Meteorology, 73: 159-182
    Nghiem S V, Li F K, Neumann G, et al. 1995. Observations of radar backscatter at Ku and C bands in the presence of large wave during the surface wave dynamics experiment. IEEE Transactions on Geoscience and Remote Sensing, 33(3): 708-721
    Plagge A M, Vandemark d, Chapron B. 2012. Examining the impact of surface currents on satellite scatterometer and altimeter ocean wind. Journal of Atmospheric and Oceanic Technology, 29(12): 1776-1793
    Quilfen Y, Chapron B, Collard F, et al. 2004. Relationship between ERS scatterometer measurement and integrated wind and wave parameters. Journal of Atmospheric and Oceanic Technology, 21(2): 368-373
    Quilfen Y, Chapron B, Vandemark d. 2001. The ERS scatterometer wind measurement accuracy: evidence of seasonal and regional biases. Journal of Atmospheric and Oceanic Technology, 18(10): 1684-1697
    Quilfen Y, Chapron B, Elfouhaily T K, et al. 1998. Observation of tropical cyclones by high-resolution scatterometry. Journal of Geophysical Research, 103(C4): 7767-7786
    Smith S d. 1988. Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. Journal of Geophysical Research, 93(C12): 15467-15472
    Stoffelen A, david A. 1997. Scatterometer data interpretation: measurement space and inversion. Journal of Atmospheric and Oceanic Technology, 14(6): 1298-1313
    Tison C, Amiot T, Bourbier J, et al. 2009. directional wave spectrum estimation by SWIM instrument on CFOSAT. In: Harold Annegarn, ed. Oceans'09 MTS/IEEE Proceedings, Vol. 5. Piscataway, USA: Institute of Electrical and Electronics Engineers, 312-315
    Zhang Biao, Perrrie W, Vachon P W, et al. 2012. Ocean vector wind retrieval from C-band fully polarimetric SAR measurements. IEEE Transactions on Geoscience and Remote Sensing, 50(11): 4252-4261
  • 加载中
计量
  • 文章访问数:  1845
  • HTML全文浏览量:  62
  • PDF下载量:  1576
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-27
  • 修回日期:  2014-10-08

目录

    /

    返回文章
    返回