The energy budget under the influence of topography in the Zhujiang River Estuary in China

LIU Huan WU Chaoyu WU Yaju

LIUHuan, WUChaoyu, WUYaju. 地形作用下的珠江河口能量平衡[J]. 海洋学报英文版, 2015, 34(1): 148-158. doi: 10.1007/s13131-015-0606-y
引用本文: LIUHuan, WUChaoyu, WUYaju. 地形作用下的珠江河口能量平衡[J]. 海洋学报英文版, 2015, 34(1): 148-158. doi: 10.1007/s13131-015-0606-y
LIU Huan, WU Chaoyu, WU Yaju. The energy budget under the influence of topography in the Zhujiang River Estuary in China[J]. Acta Oceanologica Sinica, 2015, 34(1): 148-158. doi: 10.1007/s13131-015-0606-y
Citation: LIU Huan, WU Chaoyu, WU Yaju. The energy budget under the influence of topography in the Zhujiang River Estuary in China[J]. Acta Oceanologica Sinica, 2015, 34(1): 148-158. doi: 10.1007/s13131-015-0606-y

地形作用下的珠江河口能量平衡

doi: 10.1007/s13131-015-0606-y
基金项目: The National Basic Research and development Program (973 program) of China under contract No. 2013CB956502; the National Natural Science Foundation of China under contract No. 41006050; the Open Research Foundation of Pearl River Hydraulic Research Institute of China under contract No. 2013KJ07.

The energy budget under the influence of topography in the Zhujiang River Estuary in China

  • 摘要: 珠江河口由河网区和河口湾区两部分组成, 是中国最复杂的大河河口之一. 不仅由于珠江河口具有世界上最复杂的河网系统, 其河口湾区的地貌动力学特征也很具特色. 地形边界对于珠江河口的潮汐能量耗散和平衡有显著影响. 本文基于包括河网区、河口湾区和近海水域的三维正压模型, 讨论了地形边界影响下的珠江河口能量平衡. 模型通过1999年洪季和2001年枯季的实测资料进行验证, 模型计算结果表明: (1)珠江河口能量来源受潮汐和径流共同作用, 季节性变化明显;(2)珠江河口存在若干高能耗区, 其单位面积能耗率比上下游河段平均能耗率高1~2个量级, 它们和一定的动力结构与地貌单元相联系. 根据地貌特征和消能特点, 可以划分为以下三种类型: "门"的高能耗区、曲折河段高能耗区和分汊汇流高能耗区.
  • Abdennadher J, Boukthir M. 2006. Numerical simulation of the barotropic tides in the Tunisian shelf and the Strait of Sicily. Journal of Marine Systems, 63(3-4): 162-182
    Bao Yun, Lai Zhigang, Liu Huan. 2005. Hydrodynamic connection calculation by a baroclinic model for 1-d river network and 3-d river estuary at Zhujiang River estuary. Journal of Tropical Oceanography (in Chinese), 24(4): 67-72
    Barthel K, Gade H G, Sandal C K. 2004. A mechanical energy budget for the North Sea. Continental Shelf Research, 24(2): 167-181
    Chau K W, Jiang Y W. 2003. Simulation of transboundary pollutant transport action in the Pearl River delta. Chemosphere, 52(9): 1615-1621
    Chen Xiaoling, Lu Jianzhong, Cui Tingwei, et al. 2010. Coupling remote sensing retrieval with numerical simulation for SPM study—Taking Bohai Sea in China as a case. International Journal of Applied Earth Observation and Geoinformation, 12(S2): S203-S211
    davies A M, Hall P, Howarth M J, et al. 2004. Tidal currents, energy flux and bottom boundary layer thickness in the Clyde Sea and North Channel of the Irish Sea. Ocean dynamics, 54(2): 108-125
    dong Lixian, Su Jilan, Wong L A, et al. 2004. Seasonal variation and dynamics of the Pearl River plume. Continental Shelf Research, 24(16): 1761-1777
    Foreman M G G, Cummins P F, Cherniawsky J Y, et al. 2006. Tidal energy in the Bering Sea. Journal of Marine Research, 64(6): 797-818
    Foreman M G G, Sutherland G, Cummins P F. 2004. M2 tidal dissipation around Vancouver Island: an inverse approach. Continental Shelf Research, 24(18): 2167-2185
    Gill A E. 1982. Atmosphere-Ocean dynamics. New York: Academic Press, 76-82
    Harari J, Camargo R. 2003. Numerical simulation of the tidal propagation in the coastal region of Santos (Brazil, 24°S 46°W). Continental Shelf Research, 23(16): 1597-1613
    Hooke J M. 2007. Spatial variability, mechanisms and propagation of change in an active meandering river. Geomorphology, 84(3-4): 277-296
    Hu Jiatang, Li Shiyu. 2008. One-dimensional salinity and three-dimensional baroclinic coupled model for simulating the flow in Pearl River delta. Journal of Hydraulic Engineering (in Chinese), 39(11): 1174-1182
    Hu Jiatang, Li Shiyu. 2009. Modeling the mass fluxes and transformations of nutrients in the Pearl River delta, China. Journal of Marine Systems, 78(1): 146-167
    Hua Zulin, Gu Li. 2009. Experiments of three-dimensional flow structure in braided rivers. Journal of Hydrodynamics, 21(2): 228-237
    Jing Zhiyou, Qi Yiquan, Hua Zulin, et al. 2009. Numerical study on the summer upwelling system in the northern continental shelf of the South China Sea. Continental Shelf Research, 29(2): 467-478
    Li Peiliang, Zhou Juan, Li Lei, et al. 2010. Tidal energy fluxes and bottom boundary layer energy dissipation in the Bering Sea. Journal of Marine Science and Application, 9(3): 340-346
    Liu Huan, Wu Chaoyu, Bao Yun. 2011. Energy flux and dissipation in the Pearl River Estuary. Journal of Tropical Oceanography (in Chinese), 30(3): 16-23
    Mao Qingwen, Shi Ping, Yin Kedong, et al. 2004. Tides and tidal currents in the Pearl River Estuary. Continental Shelf Research, 24(16): 1797-1808
    Mellor G L, Yamada T. 1982. development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics, 20(4): 851-875
    Ning X, Chai Fei, Xue Huijie, et al. 2004. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. Journal of Geophysical Research, 109(C10): doi: 10.1029/2004JC002365
    Scarlatos P d. 1993. Tidal energy dissipation in well-mixed estuaries. Journal of Coastal Research, 9(4): 907-914
    Seim H, Blanton J, Elston S. 2006. Tidal circulation and energy dissipation in a shallow, sinuous estuary. Ocean dynamics, 56(3-4): 360-375
    Smagorinsky J. 1963. General circulation experiments with the primitive equations: I. The base experiment. Monthly Weather Review, 91(3): 99-164
    Stoesser T, Ruether N, Olsen N R B. 2010. Calculation of primary and secondary flow and boundary shear stresses in a meandering channel. Advances in Water Resources, 33(2): 158-170
    Takasu湧?戠留搬朠效瑩?景漠牔?琠框敵?偩敷慡牲污?剔椮瘠攱爹??献琠畅慮牥祲?摹甠牢楡湬条?獣略洠浯敦爠???漠畴物湤慡汬?潣晵??慥牮楴渠敩?匠祴獨瑥攠浏獢?????ㄠ???????????戮爠?婯桵潲湮条??楯敦樠畴湨???楣??楮湯杧???とど???吠楓摯慣汩?整湹攠牯杦礠?晡汰畡确攬猠?愵渺搠′搴椭猳猳椼灢慲琾楔潡湹?楯湲?瑇栠敉??栱改猱愹瀮攠慔歩敤??愠祦???潴湩瑯楮渠敩湮琠慴汨?匠桉敲汩晳?删敓獥敡愮爠捐桨???????????㈠???のsactions of the Royal Society of London, A220: 1-33
    Wang Chonghao, Wai W H O, Li Y S, et al. 2006. Modelling of the wave-current interaction in the Pearl River Estuary. Journal of Hydrodynamics: Ser B, 18(3): 159-165
    Weber L J, Schumate E d, Mawer N. 2001. Experiments on flow at a 90° open-channel junction. Journal of Hydraulic Engineering, 127(5): 340-350
    Wong L A, Chen J C, dong Lixian. 2004. A model of the plume front of the Pearl River Estuary, China and adjacent coastal waters in the winter dry season. Continental Shelf Research, 24(16): 1779-1795
    Wong L A, Chen J C, Xue Huijie, et al. 2003a. A model study of the circulation in the Pearl River Estuary (PRE) and its adjacent coastal waters: 1. Simulations and comparison with observations. Journal of Geophysical Research, 108(C5): doi: 10.1029/2002JC001451
    Wong L A, Chen J C, Xue Huijie, et al. 2003b. A model study of the circulation in the Pearl River Estuary (PRE) and its adjacent coastal waters: 2. Sensitivity experiments. Journal of Geophysical Research, 108(C5): doi: 10.1029/2002JC001452
    Wu Chaoyu, Wei Xing, Ren Jie, et al. 2010. Morphodynamics of the rock-bound outlets of the Pearl River estuary, South China—A preliminary study. Journal of Marine Systems, 82(S1): S17-S27
    Wu Chaoyu, Wu Jiaxue. 1994. Small scale dynamic structures and their sedimentation effects in estuarine environment. In: Arcilla A S, Stive M J F, Kraus N C, eds. Coastal dynamics ‘94, Proceedings of an International Conference on the Role of the Large Scale Experiments in Coastal Research. New York: ASCE, 158-174
    Wu Chaoyu, Zhou di. 2001. Long-term morpho-dynamics in special type of estuary. Science in China: Series B, 44(S1): 112-125
    Zhang Heng, Li Shiyu. 2010. Effects of physical and biochemical processes on the dissolved oxyge
  • 加载中
计量
  • 文章访问数:  1191
  • HTML全文浏览量:  17
  • PDF下载量:  1097
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-10-17
  • 修回日期:  2014-10-08

目录

    /

    返回文章
    返回