A fuzzy quantification approach of uncertainties in an extreme wave height modeling

ZHANG Yi CAO Yingyi

ZHANGYi, CAOYingyi. 极值波高建模中不确定性的模糊量化方法[J]. 海洋学报英文版, 2015, 34(3): 90-98. doi: 10.1007/s13131-015-0636-5
引用本文: ZHANGYi, CAOYingyi. 极值波高建模中不确定性的模糊量化方法[J]. 海洋学报英文版, 2015, 34(3): 90-98. doi: 10.1007/s13131-015-0636-5
ZHANG Yi, CAO Yingyi. A fuzzy quantification approach of uncertainties in an extreme wave height modeling[J]. Acta Oceanologica Sinica, 2015, 34(3): 90-98. doi: 10.1007/s13131-015-0636-5
Citation: ZHANG Yi, CAO Yingyi. A fuzzy quantification approach of uncertainties in an extreme wave height modeling[J]. Acta Oceanologica Sinica, 2015, 34(3): 90-98. doi: 10.1007/s13131-015-0636-5

极值波高建模中不确定性的模糊量化方法

doi: 10.1007/s13131-015-0636-5

A fuzzy quantification approach of uncertainties in an extreme wave height modeling

  • 摘要: 本篇论文提出了一种对有效波高极值建模当中不确定性的非传统模糊量化方法。首先,传统的参数模型被选择拿来拟合记录的海洋波高数据及其相关的极值推断。本文将就这些模型及数据进行比较和讨论。然后,本文提出一种新型的模糊模型以结合泊松过程和广义Pareto分布(GPD)模型在拟合时间序列上产生的不确定性。在建模中,长期回归值以及阈值被认为是随时间变化的非平稳状态。再基于模糊理论拓展定理,本文深入介绍了构建模糊回归值的新型构造方法。这种非传统的模型,在与传统模型中的比较中具有高度保守性。在模糊界限的设计理念里,可以使得结构的稳固设计达到更好的解决。
  • Beer M, Zhang Y, Quek S T, et al. 2013. Reliability analysis with scarce information: comparing alternative approaches in a geotechnical engineering context. Structural Safety, 41: 1-10
    Chen T C, Yoon J. 2002. Interdecadal variation of the North Pacific wintertime blocking. Monthly Weather Review, 130(12): 3136-3143
    Coles S G. 2001. An Introduction to Statistical Modeling of Extreme Values. New York: Springer
    Corti S, Giannini A, Tibaldi S, et al. 1997. Patterns of low-frequency variability in a three-level quasi-geostrophic model. Climate Dynamics, 13(12): 883-904
    Ewans K, Jonathan P. 2014. Evaluating environmental joint extremes for the offshore industry using the conditional extremes model. Journal of Marine Systems, 130: 124-130
    Guedes Soares C, Weisse R, Alvarez E, et al. 2002. A 40 year hindcast of wind, sea level and waves in European waters. In: Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering. United States: American Society of Mechanical Engineers, 1-7
    Harrison G P, Wallace A R. 2005. Sensitivity of wave energy to climate change. IEEE Transactions on Energy Conversion, 20(4): 870-877
    Möller B, Beer M. 2004. Fuzzy Randomness: Uncertainty in Civil Engineering and Computational Mechanics. Berlin: Springer
    Morton I D, Bowers J, Mould G. 1997. Estimating return period wave heights and wind speeds using a seasonal point process model. Coastal Engineering, 31(14): 305-326
    Pickands J. 1975. Statistical inference using extreme order statistics. The Annals of Statistics, 3(1): 119-131
    Smith R L. 2001. Environmental Statistics. Technical Report. Department of Statistics, University of North Carolina, Chapel Hill
    Wang X L, Zwiers F W, Swail V R. 2004. North Atlantic Ocean wave climate change scenarios for the twenty-first century. Journal of Climate, 17(12): 2368-2383
    Zadeh L A. 1965. Fuzzy sets. Information and Control, 8(3): 338-353
    Zhang Yi, Lam J S L. 2014. Non-conventional modeling of extreme significant wave height through random sets. Acta Oceanologica
    Sinica, 33(7): 125-130
    Zheng Chongwei, Shao Longtan, Shi Wenli, et al. 2014. An assessment of global ocean wave energy resources over the last 45 a. Acta Oceanologica Sinica, 33(1): 92-101
  • 加载中
计量
  • 文章访问数:  1657
  • HTML全文浏览量:  43
  • PDF下载量:  1890
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-24
  • 修回日期:  2014-10-21

目录

    /

    返回文章
    返回