Impact of rain-induced sea surface roughness variations on salinity retrieval from the Aquarius/SAC-D satellite

MA Wentao YANG Xiaofeng YU Yang LIU Guihong LI Ziwei JING Cheng

MAWentao, YANGXiaofeng, YUYang, LIUGuihong, LIZiwei, JINGCheng. 降雨导致的海面粗糙度对Aquarius卫星盐度反演的影响研究[J]. 海洋学报英文版, 2015, 34(7): 89-96. doi: 10.1007/s13131-015-0660-5
引用本文: MAWentao, YANGXiaofeng, YUYang, LIUGuihong, LIZiwei, JINGCheng. 降雨导致的海面粗糙度对Aquarius卫星盐度反演的影响研究[J]. 海洋学报英文版, 2015, 34(7): 89-96. doi: 10.1007/s13131-015-0660-5
MA Wentao, YANG Xiaofeng, YU Yang, LIU Guihong, LI Ziwei, JING Cheng. Impact of rain-induced sea surface roughness variations on salinity retrieval from the Aquarius/SAC-D satellite[J]. Acta Oceanologica Sinica, 2015, 34(7): 89-96. doi: 10.1007/s13131-015-0660-5
Citation: MA Wentao, YANG Xiaofeng, YU Yang, LIU Guihong, LI Ziwei, JING Cheng. Impact of rain-induced sea surface roughness variations on salinity retrieval from the Aquarius/SAC-D satellite[J]. Acta Oceanologica Sinica, 2015, 34(7): 89-96. doi: 10.1007/s13131-015-0660-5

降雨导致的海面粗糙度对Aquarius卫星盐度反演的影响研究

doi: 10.1007/s13131-015-0660-5

Impact of rain-induced sea surface roughness variations on salinity retrieval from the Aquarius/SAC-D satellite

  • 摘要: 降雨引起海表面L波段发射率变化的原因主要有2种, 即表层海水淡化和海表粗糙度改变。通过对Aquarius与TRMM 3B42的匹配数据集研究发现, 与模式得到的盐度相比, Aquarius卫星反演得到的盐度在降雨发生, 尤其是高降雨率时明显降低。在降雨率为25 mm/hr时, 卫星反演的盐度比模式盐度平均低约2 psu。当不考虑海水淡化的影响时, 考虑海表面粗糙度的影响时可以消除反演得到的盐度与模式盐度的偏差。将降雨波谱引入小斜率近似模型, 可以模拟海表面粗糙度的改变, 进而得到降雨引起的海表面发射率改变。本文比较了经验的和理论的降雨波谱模型, 发现采用经验模型可以更好地模拟实测海面发射率增量, 然而经验模型的系数还需进一步改进。本文利用2年实测匹配数据对经验模型的系数进行拟合, 获得了降雨条件下海面发射率的改进模型。模型和实测数据表明, 海表发射率随风速和降雨率升高, 海表面发射率随降雨率的增长速度在低风速和低降雨率时较快, 而在高风速和大降雨率时较慢。改进模型得到的发射率增量与实测发射率增量的偏差在1e-4左右, 均方根误差略大于1e-3。最后, 本文利用2014年5月的匹配数据对模型进行了验证。结果表明, 采用改进模型反演得到的盐度与模式盐度的偏差得到了校正, 它们之间的均方根误差也减小了, 在低风速和低降雨率时均方根误差优于1 psu。
  • Bliven L F, Sobieski P W, Craeye C. 1997. Rain generated ring-waves: measurements and modelling for remote sensing. IntJRemote Sens, 18(1): 221-228
    Boutin J, Martin N, Reverdin G, et al. 2013. Sea surface freshening inferred from SMOS and ARGO salinity: impact of rain. Ocean Sci, 9(1): 183-192
    Boutin J, Martin N, Reverdin G, et al. 2014. Sea surface salinity under rain cells: SMOS satellite and in situ drifters observations. Journal of Geophysical Research: Oceans, 119(8): 5533-5545
    Boutin J, Martin N, Yin Xiaobin, et al. 2012. First assessment of SMOS data over open ocean: Part II-Sea surface salinity. IEEE Trans- Geosci Remote Sens, 50(5): 1662-1675
    Chassignet E P, Hurlburt H E, Metzger E J, et al. 2009. US GODAE: global ocean prediction with the HYbrid coordinate ocean model (HYCOM). Oceanography, 22(2): 64-75
    Contreras R F, Plant W J. 2006. Surface effect of rain on microwave backscatter from the ocean: Measurements and modeling. Journal of Geophysical Research: Oceans (1978-2012), 111(C8): C08019
    Craeye C, Sobieski P W, Bliven L F. 1997. Scattering by artificial wind and rain roughened water surfaces at oblique incidences. IntJRemote Sens, 18(10): 2241-2246
    Durden S L, Vesecky J F. 1985. A physical radar cross-section model for a wind-driven sea with swell. IEEE JOceanic Eng, 10(4): 445-451
    Felton C S, Subrahmanyam B, Murty V S N, et al. 2014. Estimation of the barrier layer thickness in the Indian Ocean using Aquarius Salinity. Journal of Geophysical Research: Oceans, 119(7): 4200-4213
    Font J, Camps A, Borges A, et al. 2010. SMOS: The challenging sea surface salinity measurement from space. Proc IEEE, 98(5): 649-665
    Johnson J T, Zhang Min. 1999. Theoretical study of the small slope approximation for ocean polarimetric thermal emission. IEEE Trans Geosci Remote Sens, 37(5): 2305-2316
    Kerr Y H, Waldteufel P, Wigneron J-P, et al. 2010. The SMOS mission: New tool for monitoring key elements ofthe global water cycle. Proc IEEE, 98(5): 666-687
    Lagerloef G, Colomb F R, Le Vine D, et al. 2008. The Aquarius/SAC-D mission: Designed to meet the salinity remote-sensing challenge. Oceanography, 21(1): 68-81
    Le Vine D M, Lagerloef G S E, Torrusio S E. 2010. Aquarius and remote sensing of sea surface salinity from space. Proc IEEE, 98(5): 688-703
    Ma Wentao, Yang Xiaofeng, Liu Guihong, et al. 2014. An Improved Model for L-Band Brightness Temperature Estimation Over Foam-Covered Seas Under Low and Moderate Winds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(9): 3784-3793
    Meissner T, Wentz F J. 2004. The complex dielectric constant of pure and sea water from microwave satellite observations. IEEE Trans Geosci Remote Sens, 42(9): 1836-1849
    Qu Tangdong, Song Y T, Maes C. 2014. Sea surface salinity and barrier layer variability in the equatorial Pacific as seen from Aquarius and Argo. Journal of Geophysical Research: Oceans, 119(1): 15-29
    Reynolds R W, Smith T M, Liu Chunying, et al. 2007. Daily high-resolution- blended analyses for sea surface temperature. Journal of Climate, 20(22): 5473-5496
    Sobieski P, Craeye C, Bliven L F. 2009. A relationship between rain radar reflectivity and height elevation variance of ringwaves due to the impact of rain on the sea surface. Radio Science, 44(3): CiteID RS3005
    Tang Wenqing, Yueh S, Fore A, et al. 2013. The rain effect on Aquarius' L-band sea surface brightness temperature and radar backscatter. Remote Sens Environ, 137: 147-157
    Tang Wenqing, Yueh S H, Fore A G, et al. 2014. Uncertainty of Aquarius sea surface salinity retrieved under rainy conditions and its implication on the water cycle study. Journal of Geophysical Research: Oceans, 119(8): 4821-4839
    Terray L, Corre L, Cravatte S, et al. 2012. Near-surface salinity as nature's rain gauge to detect human influence on the tropical water cycle. Journal of Climate, 25(3): 958-977
    Wentz F J. 2005. The effect of clouds and rain on Aquarius salinity retrieval. Remote Sensing System Technical Memorandum, 3031805
    Wentz F J, Le Vine David M. 2013. Aquarius Salinity Retrieval Algorithm. Algorithm Theoretical Basis Document
    Yin Xiaobin, Boutin J, Martin N, et al. 2012a. Optimization of L-band sea surface emissivity models deduced from SMOS data. IEEE Trans Geosci Remote Sens, 50(5): 1414-1426
    Yin Xiaobin, Boutin J, Spurgeon P. 2012b. First assessment of SMOS data over open ocean: Part I—Pacific Ocean. IEEE Trans Geosci Remote Sens, 50(5): 1648-1661
    Yueh S H, Dinardo S J, Fore A G, et al. 2010. Passive and active L-band microwave observations and modeling of ocean surface winds. IEEE Trans Geosci Remote Sens, 48(8): 3087-3100
    Yueh S H, Tang Wenqing, Fore A G, et al. 2013. L-band passive and active microwave geophysical model functions of ocean surface winds and applications to Aquarius retrieval. IEEE Trans Geosci Remote Sens, 51(9): 4619-4632
  • 加载中
计量
  • 文章访问数:  1316
  • HTML全文浏览量:  48
  • PDF下载量:  1158
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-08
  • 修回日期:  2015-02-02

目录

    /

    返回文章
    返回