Estimation of annual variation of water vapor in the Arctic Ocean between 80°-87°N using shipborne GPS data based on kinematic precise point positioning

LUO Xiaowen ZHANG Tao GAO Jinyao YANG Chunguo WU Zaocai

罗孝文, 张涛, 高金耀, 杨春国, 吴招才. 基于船载双频GPS的北极(80-87°)水汽年变化估计[J]. 海洋学报英文版, 2015, 34(6): 1-4. doi: 10.1007/s13131-015-0680-1
引用本文: 罗孝文, 张涛, 高金耀, 杨春国, 吴招才. 基于船载双频GPS的北极(80-87°)水汽年变化估计[J]. 海洋学报英文版, 2015, 34(6): 1-4. doi: 10.1007/s13131-015-0680-1
LUO Xiaowen, ZHANG Tao, GAO Jinyao, YANG Chunguo, WU Zaocai. Estimation of annual variation of water vapor in the Arctic Ocean between 80°-87°N using shipborne GPS data based on kinematic precise point positioning[J]. Acta Oceanologica Sinica, 2015, 34(6): 1-4. doi: 10.1007/s13131-015-0680-1
Citation: LUO Xiaowen, ZHANG Tao, GAO Jinyao, YANG Chunguo, WU Zaocai. Estimation of annual variation of water vapor in the Arctic Ocean between 80°-87°N using shipborne GPS data based on kinematic precise point positioning[J]. Acta Oceanologica Sinica, 2015, 34(6): 1-4. doi: 10.1007/s13131-015-0680-1

基于船载双频GPS的北极(80-87°)水汽年变化估计

doi: 10.1007/s13131-015-0680-1
基金项目: Chinese Polar Environment Comprehensive Investigation and Assessment Programmes under contract Nos CHINARE 2013-03-03 and CHINARE 2013-04-03; the National Oceanic Commonweal Research Project under contract No. 201105001; the National Natural Science Foundation of China under contract No. 41374043.

Estimation of annual variation of water vapor in the Arctic Ocean between 80°-87°N using shipborne GPS data based on kinematic precise point positioning

  • 摘要: 水汽含量及变化是气象和气候研究的一项重要参数。本世纪初发展起来的地基GPS遥感水汽技术能提供高精度(1-2mm)、高时间分辨率和高地面覆盖率的可降水量PWV序列。同时,一些实验表明,基于移动平台的GPS遥感水汽和地基遥感水汽精度相当。因此,为了更好地开展多种气象和气候研究,如卫星数据资料的校准、海空交换面各种特性及气象预报,需要把这个技术扩展到海洋并进行相关研究。基于以上目的,本文把GPS精密单点定位技术应用到北冰洋(80-87°N)地区的水汽研究,同时计算了2008年和2012年水汽的变化量,其变化特性和正在增强的温室效应一致。
  • Baker H C. 1998. GPS water vapour estimation for meteorological ap-plications [dissertation]. United Kingdom: University of Not-tingham, 416
    Bevis M, Businger S, Herring T A, et al. 1992. GPS meteorology: re-mote sensing of atmospheric water vapor using the global posi-tioning system. Journal of Geophysical Research, 971(D14): 15787-15801
    Brunner F K, Welsch W M. 1993. Effect of the troposphere on GPS measurements. GPS World, 4(1): 42-46
    Dodson A H, Baker H C. 1998. The accuracy of GPS water vapour es-timation. Proceedings of the 1998 National Technical Meeting of the Institute of Navigation, California, 21-23
    Elgered G, Rönnäng B, Winberg E, et al. 1985. Satellite-Earth Range Meaurements: 1. Correction of the Excess Path Length Due to Atmospheric Water Vapour by Ground Based Microwave Ra-diometry. Research Report No. 147. Gothenburg, Sweden: De-partment of Radio and Space Science, Chalmers University of Technology
    Kouba J, Héroux P. 2001. Precise point positioning using IGS orbit and clock products. GPS Solutions, 5(2): 12-28
    Rocken C, Van Hove T, Johnson J, et al. 1995. GPS/STORM-GPS sens-ing of atmospheric water vapor for meteorology. Journal of At-mospheric and Oceanic Technology, 12(3): 468-478
    Zhang Xiaohong, Andersen O B. 2006. Surface ice flow velocity and tide retrieval of the Amery ice shelf using precise point posi-tioning. Journal of Geodesy, 80(4): 171-176
    Zumbergre J F, Heflin M B, Jefferson D C, et al. 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, 102(B3): 5005-5017
  • 加载中
计量
  • 文章访问数:  1187
  • HTML全文浏览量:  38
  • PDF下载量:  789
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-05-27
  • 修回日期:  2014-09-16

目录

    /

    返回文章
    返回