A high wind geophysical model fuction for QuikSCAT wind retrievals and application to Typhoon IOKE

ZOU Juhong ZENG Tao CUI Songxue

邹巨洪, 曾韬, 崔松雪. 一种QuikSCAT大风地球物理模型及其在台风IOKE风场反演中的应用[J]. 海洋学报英文版, 2015, 34(7): 65-73. doi: 10.1007/s13131-015-0698-4
引用本文: 邹巨洪, 曾韬, 崔松雪. 一种QuikSCAT大风地球物理模型及其在台风IOKE风场反演中的应用[J]. 海洋学报英文版, 2015, 34(7): 65-73. doi: 10.1007/s13131-015-0698-4
ZOU Juhong, ZENG Tao, CUI Songxue. A high wind geophysical model fuction for QuikSCAT wind retrievals and application to Typhoon IOKE[J]. Acta Oceanologica Sinica, 2015, 34(7): 65-73. doi: 10.1007/s13131-015-0698-4
Citation: ZOU Juhong, ZENG Tao, CUI Songxue. A high wind geophysical model fuction for QuikSCAT wind retrievals and application to Typhoon IOKE[J]. Acta Oceanologica Sinica, 2015, 34(7): 65-73. doi: 10.1007/s13131-015-0698-4

一种QuikSCAT大风地球物理模型及其在台风IOKE风场反演中的应用

doi: 10.1007/s13131-015-0698-4

A high wind geophysical model fuction for QuikSCAT wind retrievals and application to Typhoon IOKE

  • 摘要: 地球物理模型用于描述后向散射系数与海面风场之间的关系, 在风场反演中扮演非常重要的作用, 可直接决定风场反演精度。现有QSCAT1地球物理模型在中低风速条件下表现尚可, 但在高风速条件下精度较差。由于缺乏现场数据, QSCAT1在高风速条件下通常高估sigma0, 使得反演获得的风速偏低。本研究利用QuikSCAT和SSM/I在西太平洋上对台风的同步结果进行对比分析, 结果表明SSM/I在高风速条件下的观测结果更加接近"最佳路径分析"结果。在此基础上, 本研究采用QuikSCAT和SSM/I的同步观测数据, 并采用人工神经网络方法, 建立大风地球物理模型, 并将该模型应用于QuikSCAT对台风IOKE观测的风场反演, 反演所得最高风速达55m/s。同时, 运用Holland台风模型对反演结果进行对比分析, 结果表明本研究建立的大风地球物理模型较QSCAT1精度有较大提高, 单反演结果中仍存在一定误差, 在台风条件下更高精度的风场反演有必要考虑降雨影响。
  • Bentamy A, Quilfen Y, Flament P. 2002. Scatterometer wind fields: a new release over the decade 1991-2001. Canadian Journal of Remote Sensing, 28(3): 431-449
    Bourassa M A, Legler D M, O'Brien J J, et al. 2003. SeaWinds validation with research vessels. J Geophys Res, 108(C2), doi: 10.1029/2001JC001028
    Brown R A. 1998. Remote Sensing of the Pacific Ocean by Satellites, Global High Wind Deficiency. Marrickville, Australia: Southwood Carswell J, Carson S C, McIntosh R E, et al. 1994. Airborne scatterometers: Investigating ocean backscatter under low and highwind conditions. Proc IEEE, 82(12): 1835-1860
    Chi Chongyung, Li Fuk K. 1988. A comparative study of several wind estimation algorithms for spaceborne scatterometers. IEEE Transactions on Geoscience and Remote Sensing, 26(2): 115-121
    Donneley W J, Carswell J R, McIntosh R E, et al. 1999. Revised ocean backscatter models at C and Ku band under high-wind conditions. J Geophys Res, 104(C5): 11485-11497
    Dvorak V F. 1975. Tropical cyclone intensity analysis and forecasting from satellite imagery. Mon Wea Rev, 103(5): 420-430
    Fernandez D E. 2004. Remote sensing of the ocean and the atmospheric boundary layer within tropical cyclones [dissertation]. Massachusetts: University of Massachusetts
    Freilich M H. 2000. SeaWinds Algorithm Theoretical Basis Document. http://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd-sws- 01.pdf
    Graf J, Sasaki C, Winn C, et al. 1998. NASA scatterometer experiment. Acta Astron, 43(7-8): 397-407
    Holland G J. 1980. An analytic model of the wind and pressure profiles in hurricanes. Mon Wea Rev, 108(8): 1212-1218
    Jones W L, Cardone V J, Pierson W J, et al. 1999. NSCAT high-resolution surface wind measurements in typhoon violet. Journal of Geophysical Research, 104(C5): 11247-11259
    Lin Mingsen, Sun Ying, Zheng Shuqing. 1998. A study of a new retrieval algorithm for measurement of oceanic windvectors field using satellite microwave scatterometer. Acta Oceanologica Sinica, 17(3): 305-319
    Mejia C, Badran F, Bentamy A, et al. 1999. Determination of the geophysical model function of NSCAT and its corresponding variance by the use of neural networks. Journal of Geophysical Research, 104(C5): 11539-11556
    Mejia C, Thiria S, Badran F, et al. 1998. Determination of the geophysical model function of the ERS-1 scatterometer by the use of neural networks. Journal of Geophysical Research, 103(C6): 12853-12868
    Richaume P, Badran F, Crépon M, et al. 2000. Neural network wind retrieval from ERS-1 scatterometer data. Journal of Geophysical Research, 105(C4): 8737-8751
    Schultz H. 1990. A circular median filter approach for resolving directional ambiguities in wind fields retrieved from spaceborne scatterometer data. Journal of Geophysical Research, 95(C4): 5291-5303
    Stoffelen B A, Anderson D. 1997. Ambiguity removal and assimilation of scatterometer data. Quarterly Journal of the Royal Meteorological Society, 123(538): 491-518
    Thiria S, Mejia C, Badran F, et al. 1993. A neural network approach for modeling nonlinear transfer functions: application for wind retrieval from spaceborne scatterometer data. J Geophys Res, 98(C12): 22827-22841
    Wentz F J. 1997. A well calibrated ocean algorithm for SSM/I. J Geophys Res, 102(C4): 8703-8718
    Wentz F J, Freilich M H, Smith D K. 1998. NSCAT-2 geophysical model function. Proceedings of 1998 Fall AGU Meeting. San Francisco, CA: AGU
    Wentz F J, Peteherych S, Thomas L A. 1984. A model function for ocean radar cross sections at 14.6 GHz. Journal of Geophysical Research, 89(C3): 3689-3704
    Wentz F J, Spencer R W. 1998. SSM/I rain retrievals within a unified all-weather ocean algorithm. J Atmos Sci, 55(6): 1613-1627
    Young I R. 1993. An estimate of the geosat altimeter wind speed algorithm at high wind speeds. J Geophys Res, 98(C11): 20275-20285
    Yueh S H, Stiles B W, Liu W T. 2003. QuikSCAT wind retrievals for tropical cyclones. IEEE Transactions on Geoscience and Remote Sensing, 41(11): 2616-2628
    Yueh S H, Stiles B W, Tsai W Y, et al. 2001. QuikSCAT geophysical model function for tropical cyclones and application to hurricane floyd. IEEE Transactions on Geoscience Remote Sensing, 39(12): 2601-2612
    Yueh S H, West R, Li F K, et al. 2000. Dual-polarized Ku-band backscatter signatures of hurricane ocean winds. IEEE Transactions on Geoscience and Remote Sensing, 38(1): 73-88
    Zeng Lixin, Brown R A. 1998. Scatterometer observations at high wind speeds. Journal of Applied Meteorology, 37(11): 1412-1419
  • 加载中
计量
  • 文章访问数:  1283
  • HTML全文浏览量:  33
  • PDF下载量:  681
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-14
  • 修回日期:  2015-01-07

目录

    /

    返回文章
    返回