Investigation of seasonal variability of CDOM fluorescence in the southern Changjiang River Estuary by EEM-PARAFAC

BAI Ying SU Rongguo HAN Xiurong ZHANG Chuansong SHI Xiaoyong

白莹, 苏荣国, 韩秀荣, 张传松, 石晓勇. 用三维荧光光谱-平行因子分析法研究长江口南部有色溶解有机物荧光的季节变化[J]. 海洋学报英文版, 2015, 34(10): 1-12. doi: 10.1007/s13131-015-0714-8
引用本文: 白莹, 苏荣国, 韩秀荣, 张传松, 石晓勇. 用三维荧光光谱-平行因子分析法研究长江口南部有色溶解有机物荧光的季节变化[J]. 海洋学报英文版, 2015, 34(10): 1-12. doi: 10.1007/s13131-015-0714-8
BAI Ying, SU Rongguo, HAN Xiurong, ZHANG Chuansong, SHI Xiaoyong. Investigation of seasonal variability of CDOM fluorescence in the southern Changjiang River Estuary by EEM-PARAFAC[J]. Acta Oceanologica Sinica, 2015, 34(10): 1-12. doi: 10.1007/s13131-015-0714-8
Citation: BAI Ying, SU Rongguo, HAN Xiurong, ZHANG Chuansong, SHI Xiaoyong. Investigation of seasonal variability of CDOM fluorescence in the southern Changjiang River Estuary by EEM-PARAFAC[J]. Acta Oceanologica Sinica, 2015, 34(10): 1-12. doi: 10.1007/s13131-015-0714-8

用三维荧光光谱-平行因子分析法研究长江口南部有色溶解有机物荧光的季节变化

doi: 10.1007/s13131-015-0714-8
基金项目: The National Natural Science Foundation of China under contract No. 41376106; the Major Science and Technology Program for Water Pollution Control and Treatment under contract No. 2012ZX07501.

Investigation of seasonal variability of CDOM fluorescence in the southern Changjiang River Estuary by EEM-PARAFAC

  • 摘要: 长江口南部是高生物活动的区域并具有重要的生物地球化学作用。此外,强烈的陆海活动影响着这个区域,赤潮也在此频繁发生。因此它吸引了很多海洋学家的关注。在2010年10月和2011年5月,有色溶解有机物的水样取自长江口的南部。三维荧光光谱-平行因子分析法被用来分析水样中有色溶解有机物的组分。分析出了4种组分:3种类腐殖质(C1,C2和C3)和1种类蛋白质(C4)。通过分析荧光组分的时空分布,与盐度、叶绿素a和表观耗氧量的关系,可以得出陆源输入对秋季组分C1,C2和C3有最重要的影响。在春季,微生物活动和浮游植物增值也是这三种组分的重要影响因素。C4受海陆源的共同影响并代表了生物易降解的组分。长江口南部的有色溶解有机物主要受陆源输入的影响,微生物活动和浮游植物增值也是这个区域有色溶解有机物的重要来源,尤其是在春季。4种组分春季的荧光强度都高于秋季。C1,C2, C3, C4 和总荧光强度在春季比秋季分别增加了123-242%, 105-195%, 167-665%, 483-567% 和 184-245%。这正好与春季叶绿素a的浓度比秋季高了16-20倍,表观耗氧量减小了2-4倍相吻合。春季的腐殖化指数比秋季低,荧光指数比秋季高。这表明春季的有色溶解有机物不稳定并且生物活动较活跃。
  • Andersson C A, Bro R. 2000. The N-way Toolbox for MATLAB. Chem-ometrics and Intelligent Laboratory Systems, 52(1): 1-4
    Baber C B, Dobkin D P, Huhdanpaa H. 1996. The Quickhull al-gorithm for convex hulls. ACM Transaction Mathematical Soft-ware, 22(4): 469-483
    Birdwell J E, Engel A S. 2010. Characterization of dissolved organic matter in cave and spring waters using UV-vis absorbance and fluorescence spectroscopy. Organic Geochemistry, 41(3): 270-280
    Blough N V, Del Vecchio R. 2002. Chromophoric DOM in the coastal environment. In: Hansell D, Carlson C, eds. Biogeochemistry of Marine Dissolved Organic Matter. New York: Academic Press, 509-546
    Bro R. 1997. PARAFAC. Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 38(2): 149-171
    Coble P G. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar-ine Chemistry, 51(4): 325-346
    Coble P G. 2007. Marine optical biogeochemistry: the chemistry of ocean color. Chemical Reviews, 107(2): 402-418
    Cory R M, McKnight D M. 2005. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dis-solved organic matter. Environment Science & Technology, 39(21): 8142-8149
    Gao Lei, Fan Daidu, Li Daoji, et al. 2010. Fluorescence characteristics of chromophoric dissolved organic matter in shallow water along the Zhejiang coasts, southeast China. Marine Environ-mental Research, 69(3): 187-197
    Guéguen C, Granskog M A, McCullough G, et al. 2011. Characterisa-tion of colored dissolved organic matter in Hudson Bay and Hudson Strait using parallel factor analysis. Journal of Marine Systems, 88(3): 423-433
    Guo Weidong, Stedmon C A, Han Yuchao, et al. 2007. The conservat-ive and non-conservative behavior of chromophoric dissolved organic matter in Chinese estuarine waters. Marine Chemistry, 107(3): 357-366
    Hargreaves B R. 2003. Water column optics and penetration of UVR. In: Helbling E W, Zagarese H E, eds. UV Effects in Aquatic Or-ganisms and Ecosystems. Cambridge UK: The Royal Society of Chemistry, 59-108
    Holbrook R D, Yen J H, Grizzard T J. 2006. Characterizing natural or-ganic material from the Occoquan Watershed (Northern Vir-ginia, US) using fluorescence spectroscopy and PARAFAC. Sci-ence of the Total Environment, 361(1-2): 249-266
    Huguet A, Vacher L, Saubusse S, et al. 2010. New insights into the size distribution of fluorescent dissolved organic matter in estuar-ine waters. Organic Geochemistry, 41(6): 595-610
    Kowalczuk P, Cooper W J, Durako M J, et al. 2010. Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: Relationships between fluorescence and its components, absorption coefficients and organic carbon concentrations. Marine Chemistry, 118(1-2): 22-36
    Kowalczuk P, Durako M J, Young H, et al. 2009. Characterization of dissolved organic matter fluorescence in the South Atlantic Bight with use of PARAFAC model: interannual variability. Marine Chemistry, 113(3-4): 182-196
    Li Maotian, Xu Kaiqin, Watanabe M, et al. 2007. Long-term vari-ations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estu-arine ecosystem. Estuarine, Coastal and Shelf Science, 71(1-2): 3-12
    Lin Jing. 2007. Distributions of dissolved organic carbon and particu-late organic carbon in the Changjiang Estuary and its adjacent area (in Chinese) [dissertation]. Shanghai: East China Normal University
    Liu J P, Xu K H, Li A C, et al. 2007. Flux and fate of Yangtze River sedi-ment delivered to the East China Sea. Geomorphology, 85(3-4): 208-224
    Luciani X, Mounier S, Paraquetti H H M, et al. 2008. Tracing of dis-solved organic matter from the SEPETIBA Bay (Brazil) by PAR-AFAC analysis of total luminescence matrices. Marine Environ-mental Research, 65(2): 148-157
    Maie N, Yamashita Y, Cory R M, et al. 2012. Application of excitation emission matrix fluorescence monitoring in the assessment of spatial and seasonal drivers of dissolved organic matter com-position: Sources and physical disturbance controls. Applied Geochemistry, 27(4): 917-929
    McKnight D M, Boyer E W, Westerhoff P K, et al. 2001. Spectrofluoro-metric characterization of dissolved organic matter for indica-tion of precursor organic material and aromaticity. Limnology and Oceanography, 46(1): 38-48
    Murphy K R, Stedmon C A, Waite T D, et al. 2008. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy. Mar-ine Chemistry, 108(1-2): 40-58
    Nieke B, Reuter R, Heuermann R, et al. 1997. Light absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM), in the St. Lawrence estuary (Case 2 waters). Continental Shelf Research, 17(3): 235-252
    Ning X, Liu Z, Cai Y, et al. 1998. Physicobiological oceanographic re-mote sensing of the East China Sea: satellite and in situ obser-vations. Journal of Geophysical Research: Oceans, 103(C10): 21623-21635
    Ogawa H, Usui T, Koike I. 2003. Distribution of dissolved organic car-bon in the East China Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 50(2): 353-366
    Ohno T. 2002. Fluorescence inner-filtering correction for determin-ing the humification index of dissolved organic matter. Envir-onmental Science & Technology, 36(4): 742-746
    Parlanti E, Wörz K, Geoffroy L, et al. 2000. Dissolved organic matter fluorescence spectroscopy as a tool to estimate biological activ-ity in a coastal zone submitted to anthropogenic inputs. Organ-ic Geochemistry, 31(12): 1765-1781
    Shi Wei, Wang Menghua. 2012. Satellite views of the Bohai Sea, Yel-low Sea, and East China Sea. Progress in Oceanography, 104: 30-45
    Singh S, D'Sa E J, Swenson E M. 2010. Chromophoric dissolved or-ganic matter (CDOM) variability in Barataria Basin using excit-ation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC). Science of the Total Environment, 408(16): 3211-3222
    Stedmon C A, Bro R. 2008. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 6(11): 572-579
    Stedmon C A, Markager S. 2005a. Resolving the variability in dis-solved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnology and Ocean-ography, 50(2): 686-697
    Stedmon C A, Markager S. 2005b. Tracing the production and de-gradation of autochthonous fractions of dissolved organic mat-ter by fluorescence analysis. Limnology and Oceanography, 50(5): 1415-1426
    Stedmon C A, Markager S, Bro R. 2003. Tracing dissolved organic matter in aquatic environments using a new approach to fluor-escence spectroscopy. Marine Chemistry, 82(3-4): 239-254
    Tian R C, Hu F X, Martin J M. 1993. Summer nutrient fronts in the Changjiang (Yangtze River) estuary. Estuarine, Coastal and Shelf Science, 37(1): 27-41
    Wada S, Aoki M N, Tsuchiya Y, et al. 2007. Quantitative and qualitat-ive analyses of dissolved organic matter released from Ecklonia cava Kjellman, in Oura Bay, Shimoda, Izu Peninsula, Japan. Journal of Experimental Marine Biology and Ecology, 349(2): 344-358
    Wang Zhaoyu, Wang Jiangtao, Tan Liju. 2014. Variation in photosyn-thetic activity of phytoplankton during the spring algal blooms in the adjacent area of Changjiang River estuary. Ecological In-dicators, 45: 465-473
    Wang Baodong, Wang Xiulin, Zhan Run. 2003. Nutrient conditions in the Yellow Sea and the East China Sea. Estuarine, Coastal and Shelf Science, 58(1): 127-136
    Yamashita Y, Jaffé R, Maie N, et al. 2008. Assessing the dynamics of dissolved organic matter (DOM) in coastal environments by ex-citation emission matrix fluorescence and parallel factor ana-lysis (EEM-PARAFAC). Limnology and Oceanography, 53(5): 1900-1908
    Yang Liyang, Hong Huasheng, Chen C-T A, et al. 2013. Chromophor-ic dissolved organic matter in the estuaries of populated and mountainous Taiwan. Marine Chemistry, 157: 12-23
    Zepp R G, Sheldon W M, Moran M A. 2004. Dissolved organic fluoro-phores in southeastern US coastal waters: correction method for eliminating Rayleigh and Raman scattering peaks in excita-tion-emission matrices. Marine Chemistry, 89(1-4): 15-36
    Zhang Jing. 1996. Nutrient elements in large Chinese estuaries. Con-tinental Shelf Research, 16(8): 1023-1045
    Zhang Yunlin, Liu Xiaohan, Wang Mingzhu, et al. 2013. Composition-al differences of chromophoric dissolved organic matter de-rived from phytoplankton and macrophytes. Organic Geo-chemistry, 55: 26-37
    Zhang G L, Zhang J, Kang Y B, et al. 2004. Distributions and fluxes of methane in the East China Sea and the Yellow Sea in spring. Journal of Geophysical Research: Oceans, 109(C7): C07011
    Zhou Mingjiang, Shen Zhiliang, Yu Rencheng. 2008. Responses of a coastal phytoplankton community to increased nutrient input from the Changjiang (Yangtze) River. Continental Shelf Re-search, 28(12): 1483-1489
    Zhu Chun, Wang Zhanghua, Xue Bin, et al. 2011. Characterizing the depositional settings for sedimentary organic matter distribu-tions in the Lower Yangtze River-East China Sea Shelf System. Estuarine, Coastal and Shelf Science, 93(1): 182-191
    Zsolnay A, Baigar E, Jimenez M, et al. 1999. Differentiating with fluor-escence spectroscopy the sources of dissolved organic matter in soils subjected to drying. Chemosphere, 38(1): 45-50
  • 加载中
计量
  • 文章访问数:  1339
  • HTML全文浏览量:  41
  • PDF下载量:  837
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-02
  • 修回日期:  2014-12-09

目录

    /

    返回文章
    返回